K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2022

a: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

=>EF//MH

Xét ΔABC có BE/BA=BM/BC

nên ME//AC và ME/AC=1/2

=>ME=1/2AC=HF

Xét tứ giác MHEF có

MH//EF

ME=HF

Do đo: MHEF là hình thang cân

b: Xét ΔAMF vuông tại F và ΔCKF vuông tại F có

FA=FC

góc MAF=góc KCF

Do đó: ΔAMF=ΔCKF

=>MF=KF

=>F là trung điểm của MK

Xét tứ giác AMCK có

F là trung điểm chung của AC và MK

MA=MC

Do đó: AMCK là hình thoi

a: Xét tứ giác AEMF có góc AEM=góc AFM=góc FAE=90 độ

nên AEMF là hình chữ nhật

b: \(AE=\dfrac{AB}{2}=\dfrac{4}{2}=2\left(cm\right)\)

AF=AC/2=3cm

Do đó: \(S_{AEMF}=2\cdot3=6\left(cm^2\right)\)

c: Xét ΔCAB có

M là trung điểm của BC

MF//AB

Do đó F là trung điểm của AC

Xét tứ giác AMCK có

F là trung điểm chung của AC và MK

nên AMCK là hình bình hành

mà MA=MC

nên AMCK là hình thoi

a: Xét tứ giác AEMF có góc AEM=góc AFM=góc FAE=90 độ

nên AEMF là hình chữ nhật

b: \(AE=\dfrac{AB}{2}=\dfrac{4}{2}=2\left(cm\right)\)

AF=AC/2=3cm

Do đó: \(S_{AEMF}=2\cdot3=6\left(cm^2\right)\)

c: Xét ΔCAB có

M là trung điểm của BC

MF//AB

Do đó F là trung điểm của AC

Xét tứ giác AMCK có

F là trung điểm chung của AC và MK

nên AMCK là hình bình hành

mà MA=MC

nên AMCK là hình thoi