K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho tam giác ABC vuông tại A có 0 B 53  a) Tính C b) Trên cạnh BC lấy D sao cho BD = BA. Tia phân giác của góc B cắt AC ở E. Chứng minh    BEA BED . Từđó suy ra ED BC  c) Qua C vẽ đường thẳng vuông góc với BE tại H, CH cắt AB tại F. Chứng minh rằng    BHF BHC d) Chứng minh    BAC BDF và D, E, F thẳng hàng. Bài 2: Cho ABC có AB AC  ; M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A có 0 B 53  a) Tính C b) Trên cạnh BC lấy D sao cho BD = BA. Tia phân giác của góc B cắt AC ở E. Chứng minh    BEA BED . Từđó suy ra ED BC  c) Qua C vẽ đường thẳng vuông góc với BE tại H, CH cắt AB tại F. Chứng minh rằng    BHF BHC d) Chứng minh    BAC BDF và D, E, F thẳng hàng. Bài 2: Cho ABC có AB AC  ; M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho AM MD.  Chứng minh: a)    AMB DMC . Từ đó suy ra AB // CD b) AC // BD và AC = BD c) AM BC.  Bài 3: Cho tam giác ABC có AB AC  . Gọi M là một điểm nằm trong tam giác sao cho MB MC  ; N là trung điểm của BC. Chứng minh: a)    AMB DMC . Từ đó suy ra AM là tia phân giác của ·BAC. b) Ba điểm A; M; N thẳng hàng. c) MN là đường trung trực của đoạn thẳng BC

1
15 tháng 12 2021

cac ban giup minh voi nhe

 

6 tháng 12 2020
Xin lỗi mọi người nhìn hơi rối tí nhưng mà giải giúp em với ạ
2 tháng 7 2021

mnhf cần bài này gấp mong mọi người giúp 

 

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{B}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{C}+35^0=90^0\)

hay \(\widehat{C}=55^0\)

Vậy: \(\widehat{C}=55^0\)

b) Xét ΔBEA và ΔBED có 

BA=BD(gt)

\(\widehat{ABE}=\widehat{DBE}\)(BE là tia phân giác của \(\widehat{ABD}\))

BE chung

Do đó: ΔBEA=ΔBED(c-g-c)

c) Xét ΔBHF vuông tại H và ΔBHC vuông tại H có 

BH chung

\(\widehat{FBH}=\widehat{CBH}\)(BH là tia phân giác của \(\widehat{FBC}\))

Do đó: ΔBHF=ΔBHC(Cạnh góc vuông-góc nhọn kề)

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độa) Tính góc C.b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.a) Chứng minh tam giác AMB = tam giác AMC.b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.c) Qua C, vẽ...
Đọc tiếp

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độ

a) Tính góc C.

b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.

Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.

a) Chứng minh tam giác AMB = tam giác AMC.

b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.

c) Qua C, vẽ đường thẳng b song song với AM. Gọi N là giao điểm của hai đường thẳng a và b. Chứng minh tam giác AMC = tam giác CNA.

Bài 3. Cho tam giác ABC, gọi M là trung điểm của cạnh BC. Trên tia đối của tia MAlấy điểm D sao cho MD = MA.

a) Chứng minh tam giác MAB = tam giác MDC.

b) Chứng minh rằng AB = CD và AB // CD.

Bài 4. Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA. Vẽ AH vuông góc với BC tại H.

a) Chứng minh rằng: tam giác ABD = tam giác EBD và AD = ED.

b) Chứng minh rằng: AH // DE.

*Vẽ hình giúp mình*

1
17 tháng 4 2020

bài 1

có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0=>\widehat{C}=180^0-\widehat{A}-\widehat{B}=180^0-90^0-53^0=37^0\)

b) xét 2 tam giác của đề bài có

góc ABE = góc DBE

BD=BA

BE chung

=> 2 tam giác = nhau

29 tháng 1 2016

a) Ta có : tam giác ABC vuông tại A 

=> góc B + góc C = 90\(^o\)

Mà góc B = 53\(^o\)

=> góc C = góc A - góc B 

=> góc C = 90\(^o\)- 53\(^o\)

=> góc C = 37\(^o\)

b) Xét tam giác BEA và  tam giác BED có :

BD = BA (gt)

BE là cạnh chung

góc ABE = góc DBE ( BE là tia p/giác của góc B)

=>  tam giác BEA =  tam giác BED

c) Ta có CH vuông góc với BE 

=> Tam giác BHC và  tam giác BHF là  tam giác vuông

Xét  tam giác vuông BHF và  tam giác vuông BHC có:

BH là cạnh chung 

góc FBH = góc HBC ( BE là tia p/giác của góc B)

=>  tam giác vuông BHF =  tam giác vuông BHC ( cạnh góc vuông + góc nhọn )

=> BF = BC ( 2 cạnh tương ứng ) (*)

d) Xét tam giác BEF và tam giác BEC có :

BF = BC ( theo (*))

góc FBE = góc CBE ( BE là tia p/giác của góc B)

BE là cạnh chung

=>  tam giác BEF = tam giác BEC (c . g . c )

=> góc BFD = góc BCA ( 2 góc tương ứng ) (**)

Xét  tam giác BAC và  tam giác BDF có :

góc BFD = góc BCA ( theo (**))

góc B là góc chung

BA = BD (gt)

=> tam giác BAC =  tam giác BDF ( g . c . g )

=> góc FDB = góc CAB ( 2 góc tương ứng )

Xét tam giác BED có : góc EBD +  góc BED +  góc BDE = 180\(^o\)

Mà :góc FDB = góc CAB = 90\(^o\)

góc EBD = \(\frac{1}{2}\)góc B = \(\frac{53}{2}\)= 26,5\(^o\)

=> góc BED = 180\(^o\)- (90\(^o\)+ 26,5\(^o\))

=> góc BED = 180\(^o\)- 116,5\(^o\)

=> góc BED = 63,5\(^o\)

Mặt khác : Tam giác BED = tam giác BEA 

=> góc AEB = BED = 63,5\(^o\)

Xét tam giác FAE có :góc FAE + góc FEA + góc AFE = 180\(^o\)

Mà : góc FAE = 90\(^o\), góc AFE = góc ACB = 37\(^o\)

=> FEA = 180\(^o\)- (90\(^o\)+ 37\(^o\))

=> FEA = 180\(^o\)- 127\(^o\)

=> FEA = 53\(^o\)

Lại có : góc FAD = góc FEA + góc AEB + góc BED 

=> FAD = 53\(^o\)+ 63,5\(^o\)+ 63,5 \(^o\)

=> FAD = 180\(^o\)

=> D, F, E thẳng hàng

7 tháng 12 2021

undefined  undefined

a: Xét ΔBEA và ΔBED có 

BA=BD

\(\widehat{ABE}=\widehat{DBE}\)

BE chung

Do đó: ΔBEA=ΔBED

4 tháng 2 2018

a,

Xét tam giác vuông ABC có:

góc BAC=90°(gt)

góc B=53°(gt)

=>góc ACB=90°-53°=37°

b,

Xét tam giác BAE và tam giác BDE có:

BA=BD(gt)

góc DBE=góc ABE(BE là phân giác góc B)

BE cạnh chung

=>tam giác BAE=tam giác BDE(c.g.c) (1)

Lại do góc EAB=góc CAB=90°(gt)

Từ (1)=>góc EAB=góc EDB=90°

c,

Do CH_|_BE tại H(gt)

=>góc BHC=góc BHF=90°

Xét tam giác BHC và tam giác BHF có:

góc HBC=góc HBF=53/2=26,5°(BE là phân giác)

BH cạnh chung

góc HFB=góc HCB=90°-26,5°=63,5°

=>tam giác BHC=tam giác BHF(g.c.g)

d,

Tam giác Vuông BDF có:

góc DBF+góc DFB=90°

=>góc DFB=90°-53°=37°

Mà góc ACB=37°(cmt)

=>góc DFB=góc ACB=37°

Ta lại có:

BD=BA(gt)

góc CBH=góc HBF=26,5°

=>tam giác BAC=tam giác DBF(g.c.g)

Theo tổng 3 góc trong 1 tam giác,ta có:

-Trong tam giác vuông CDF có:

góc D=90°

góc C=63,5°

=>góc F=180°-(90+63,5)=26,5°

-trong tam giác vuông FHE có:

góc H=90°

góc F=26,5°(cmt)

=>góc HEF=180°-(90°+26,5)=63,5° (2)

-trong tam giác vuông CHE có:

góc H=90°

góc HCE=góc HCB-góc ACB

                =63,5°-37°=26,5°

=>góc HEC=180°-(90°+26,5°)=63,5° (3)

-trong tam giác vuông EDC có:

góc D=90°

góc C=37°(cmt)

=>góc CED=180-(90°+37°)=53° (4)

Cộng (2),(3),(4) vế theo vế, ta được:

góc (HEF+HEC+CED)=63,5°+63,5°+53°=180°

=>3 điểm D,E,F thẳng hàng(đpcm)

6 tháng 2 2018

Thank you bạn nha.

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

4
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn