Rút gọn biểu thức sau:
A=\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2013}}{2012+\frac{2012}{2}+\frac{2011}{3}+....+\frac{1}{2013}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình cxg gạp bài này nhưng ko bik giải nếu ai giải dùm bạn thì chia sẻ đáp án với mình nữa nha ! thank ! ^_^ ! >_< ! +...+ ! T_T ! $_$ ! #_# ! -~_~-!
\(\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}}{2012+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}}{\left(\frac{2012}{2}+1\right)+\left(\frac{2011}{3}+1\right)+....+\left(\frac{1}{2013}+1\right)}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2003}}{\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2003}}{2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2003}\right)}\)
\(=\frac{1}{2014}\)
xét mẫu ta được
(2012/2+1)+(2011/3+1)+...+(1/2013+1)
=2014/2+2014/3+...+2014/2013
=2014(1/2+1/3+...+1/2013) (1)
mà tử bằng 1/2+1/3+1/4+..+1/2013 (2)
(1),(2)=> A=1/2014
xét mẫu
2012+2012/2+2011/3+...+1/2013
=(1+1+1+…+1) + 2012/2+2011/3+...+1/2013
2012 số hạng
=(1 + 2012/2) + (1 + 2011/3) + ….+ (1+1/2013)
=2014/2 + 2014/3 + …. + 2014/2013
=2014 x (1/2 + 1/3 + … + 1/2013)
=))
(1/2+1/3+1/4+...+1/2013)/(2012+2012/2+2011/3+...+1/2013) =
(1/2+1/3+1/4+...+1/2013)/ 2014 x (1/2+1/3+1/4+...+1/2013) = 1/2014
1/2+1/3+1/4+..+1/2013
2012+2012/2+2011/3+...+1/2013
=1/2+1/3+1/4+...+1/2013
(2012/2+1)+(2011/3+1)+...+(1/2013+1)
=1/2+1/3+1/4+...+1/2013
2014/2+2014/3+...+2014/2013
=1/2+1/3+1/4+...+1/2013
2014(1/2+1/3+...+1/2013)
=1/2014
=1/2014 còn đâu tự làm nhé!!!!!!!!!!!!!^^^^^^^^^^^@@@@@@@########$$$$$$*********
\(Đặt\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{2013}}{2012+\frac{2012}{2}+\frac{2011}{3}+......+\frac{1}{2013}}\)
\(A=\frac{\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2013}\right)}{\left(\frac{2012}{2}+1\right)+\left(\frac{2011}{3}+1\right)+......+\left(\frac{1}{2013}+1\right)}\)
\(A=\frac{\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2013}\right)}{\frac{2014}{2}+\frac{2014}{3}+\frac{2014}{4}+....+\frac{2014}{2013}}\)
\(A=\frac{\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2013}\right)}{2014.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2013}\right)}=\frac{1}{2014}\)
\(A=\frac{T}{M}\)
\(M=\frac{2012}{2}+1+\frac{2011}{3}+1+.....+\frac{1}{2013}+1=\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}\)
\(=2014\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2013}\right)=2014.T\)
\(A=\frac{T}{M}=\frac{T}{2014.T}=\frac{1}{2014}\)
Xét mẫu số ta có: \(2012+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}\)
=\(2012+\left(\frac{2014-2}{2}+\frac{2014-3}{3}+...+\frac{2014-2013}{2013}\right)\)
= \(2012+\left(\frac{2014}{2}+\frac{2014}{3}+\frac{2014}{4}+...+\frac{2014}{2013}\right)-\left(\frac{2}{2}+\frac{3}{3}+\frac{4}{4}+...+\frac{2013}{2013}\right)\)
= \(2012+2014\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}\right)-2012\)
= \(2014\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}\right)\)
\(\Rightarrow A=\frac{1}{2014}\)