Bài 1 Cho tam giác ABC có góc A =2 lần góc B và góc C = 3/2 góc B . Tính các góc của tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
1. Ta có ^B+^C=1800-1000=800. => ^C=[(^B+^C)-(^B-^C)]/2 =(800-500)/2=150 => ^B=150+500=650.
2. ^A+^C=1800-^B=1800-800=1000
3^A=2^C => ^A/2=^C/3 = (^A+^C)/2+3 (Dãy tỉ số bằng nhau)
=(^A+^C)/5=1000/5=200 => ^A=200.2=400; ^C=200.3=600.
Bài 2:
Gọi góc ngoài đỉnh C của tam giác ABC là ^ACy => ^Cx là phân giác ^ACy
=> ^ACx=^xCy=^ACy/2=1200/2=600
^A=600 => ^ACy=^A=600. Mà 2 góc này so le trong => Cx//AB.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
3)- theo bài tao có :A+B+C=180 độ.(định lí tổng ba góc của 1 tam giác)
C:B:A=1:3:6 => C/1=B/3=A/6=(A+B+C)/(1+3+6)=180/10=18
Do đó :C/1=18 B/3=18 A/6=18
=>C=18 độ =>B=54 độ =>A=104 độ
( bạn tự vẽ hình)
a, xét tam giác ABE và tam giác ACE có:
AE chung
AB=AC (gt)
góc BAE=góc CAE( vì AE là tia phân giác của góc BAC)
=> tam giác ABE=tam giác ACE
b, vì tam giác ABE=tam giác ACE( cmt)=> BE=CE( 2 cạnh tương ứng)(1)
=> góc BEA=góc CEA ( 2 góc tương ứng)
mà 2 góc này kề bù
=> góc BEA=góc CEA= 180 độ : 2= 90 độ
=> AE vuông góc với BC (2)
từ (1) và (2) ta có AE là đường trung trực của BC.
a, xét tam giác ABE và tam giác ACE có:
AE chung
AB=AC (gt)
góc BAE=góc CAE( vì AE là tia phân giác của góc BAC)
=> tam giác ABE=tam giác ACE
b, vì tam giác ABE=tam giác ACE( cmt)=> BE=CE( 2 cạnh tương ứng)(1)
=> góc BEA=góc CEA ( 2 góc tương ứng)
mà 2 góc này kề bù
=> góc BEA=góc CEA= 180 độ : 2= 90 độ
=> AE vuông góc với BC (2)
từ (1) và (2) ta có AE là đường trung trực của BC.