K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 12 2021

Do \(a^2+b^2+c^2=1\Rightarrow0\le a;b;c\le1\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\\b^{2011}\le b\\c^{2011}\le c\end{matrix}\right.\)

\(\Rightarrow T\le a+b+c-ab-bc-ca=\left(a-1\right)\left(b-1\right)\left(c-1\right)+1-abc\le1-abc\le1\)

\(T_{max}=1\) khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị

7 tháng 3 2022

mn giúp em với em đang gấp

 

27 tháng 12 2015

\(1.\sqrt{a^2+ab+b^2}\le\frac{1+a^2+ab+b^2}{2}\)

\(\Rightarrow VT\ge\frac{1}{\frac{1+a^2+ab+b^2}{2}}+\)\(\frac{1}{\frac{1+b^2+cb+c^2}{2}}+\)\(\frac{1}{\frac{1+c^2+ac+a^2}{2}}\)\(\ge\frac{\left(1+1+1\right)^2}{\frac{1+a^2+ab+b^2}{2}+\frac{1+b^2+bc+c^2}{2}+\frac{1+c^2+ca+a^2}{2}}=\frac{9}{a^2+b^2+c^2+\frac{\left(ab+bc+ca\right)+3}{2}}\ge\frac{9}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}=VP\)

vì   3 </ 3 ( ab+bc+ca)

23 tháng 11 2019

Áp dụng BĐT Cauchy-Schwarz :

\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)(1)

Áp dụng BĐT quen thuộc \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\) :

\(\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\)(2)

Từ (1) và (2) ta có đpcm.

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{2}{3}\)

3 tháng 4 2017