Cho 4ABC nhọn có AB = AC. Kẻ BD ? AC tại D, kẻ CE ? AB tại E. Gọi I là giao điểm của BD và CE. Chứng minh rằng:
a) 4ABD = 4ACE
b) EI = DI
c) AI ? BC
( số 4 là kí hiệu tam giác, dấu hỏi chấm là kí hiệu vuông góc)
bạn nào giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn không được nói vậy , nói thế là khinh người khác và đây là nơi chúng ta giao lưu giúp nhau mà , nên bạn không được nói bậy như thế.
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó:ΔEBC=ΔDCB
Suy ra: BE=CD
b: Ta có: ΔEBC=ΔDCB
nên \(\widehat{ECB}=\widehat{DBC}\)
hay ΔIBC cân tại I
Ta có: AE+EB=AB
AD+DC=AC
mà AB=AC
và EB=DC
nên AE=AD
Xét ΔABI và ΔACI có
AB=AC
AI chung
BI=CI
Do đó: ΔABI=ΔACI
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
c: Xét ΔABC có
BD là đường cao
CE là đường cao
BD cắt CE tại I
Do đó: I là trực tâm của ΔABC
Suy ra: AI\(\perp\)BC
mà AK\(\perp\)BC
nên A,I,K thẳng hàng
=>AK,BD,CE đồng quy
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔAED có AE=AD
nên ΔAED cân tại A
c: Xét ΔEBI vuông tại E và ΔDCI vuông tại D có
EB=DC
\(\widehat{EBI}=\widehat{DCI}\)
Do đó; ΔEBI=ΔDCI
Suy ra: IB=IC
Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
a) Xét \(\Delta ABD\) và \(\Delta ACE\) có:
\(\widehat{ADB}=\widehat{AEC}=90^0\) (gt)
AB = AC (do \(\Delta ABC\) cân tại A)
\(\widehat{A}\) chung
\(\Rightarrow\Delta ABD=\widehat{ACE}\) (cạnh huyền - góc nhọn)
\(\Rightarrow AD=AE\) (hai cạnh tương ứng)
b) Xét \(\Delta AEI\) và \(\Delta ADI\) có:
\(AI\) là cạnh chung
AE = AD (cmt)
\(\widehat{AEI}=\widehat{ADI}=90^0\)
\(\Rightarrow\Delta AEI=\Delta ADI\) (cạnh huyền - góc nhọn)
\(\Rightarrow\widehat{EAI}=\widehat{DAI}\) (hai góc tương ứng)
\(\Rightarrow\) \(AI\) là tia phân giác của \(\widehat{DAE}\)
Hay \(AI\) là tia phân giác của \(\widehat{BAC}\)