K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2019

Câu c) mình sai rồi nên hãy giúp mình câu a và b thôi 

6 tháng 5 2018

ko biết

Nhìn đã hoa mắt

KB nhé

em lớp 2 nên ko hiểu 

Phương trình hoành độ giao điểm là:

\(x^2-mx+2m-4=0\)

\(\Delta=\left(-m\right)^2-4\left(2m-4\right)\)

\(=m^2-8m+16=\left(m-4\right)^2\)

Để (P) cắt (d) tại hai điểm phân biệt thì m-4<>0

hay m<>4

Ta có: \(x_1^2+x_2^2\)

\(=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=m^2-2\left(2m-4\right)\)

\(=m^2-4m+8\)

\(=\left(m-2\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi m=2

a: PTHĐGĐ là;

-1/4x^2-mx+m+2=0

=>1/4x^2+mx-m-2=0

=>x^2+4mx-4m-8=0

\(\text{Δ}=\left(4m\right)^2-4\left(-4m-8\right)\)

\(=16m^2+16m+32\)

\(=16m^2+2\cdot4m\cdot2+4+28=\left(4m+2\right)^2+28>0\)

=>Phương trình luôn có hai nghiệm phân biệt

b: \(A=x_1\cdot x_2\left(x_1+x_2\right)\)

\(=4m\left(4m+8\right)\)

\(=\left(16m^2+32m+16-16\right)\)

\(=\left(4m+4\right)^2-16>=-16\)

Dấu = xảy ra khi m=-1

23 tháng 2 2023

 

\

a: PTHĐGĐ là:

x^2+mx-m-2=0(1)

Khi m=2 thì (1) sẽ là

x^2+2x-2-2=0

=>x^2+2x-4=0

=>\(\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=6-2\sqrt{5}\\y=6+2\sqrt{5}\end{matrix}\right.\)

b: Δ=m^2-4(-m-2)

=m^2+4m+8

=(m+2)^2+4>0 với mọi x

=>(d) luôn cắt (P) tại hai điểm phân biệtx

x1^2+x2^2=7

=>(x1+x2)^2-2x1x2=7

=>(-m)^2-2(-m-2)=7

=>m^2+2m+4-7=0

=>m^2+2m-3=0

=>m=-3 hoặc m=1

b: Phương trình hoành độ giao điểm là:

\(x^2-2\left(m-1\right)x-m^2-2m=0\)

\(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\left(-m^2-2m\right)\)

\(=4m^2-8m+4+4m^2+8m=8m^2+4>0\)

Vậy: Phương trình luôn có hai nghiệm phân biệt

\(x_1^2+x_2^2+4x_1x_2=36\)

\(\Leftrightarrow\left(x_1+x_2\right)^2+2x_1x_2=36\)

\(\Leftrightarrow\left[2\left(m-1\right)\right]^2+2\left(-m^2-2m\right)=36\)

\(\Leftrightarrow4m^2-8m+4-2m^2-4m-36=0\)

\(\Leftrightarrow2m^2-12m-32=0\)

\(\Leftrightarrow\left(m-8\right)\left(m+2\right)=0\)

hay \(m\in\left\{8;-2\right\}\)

1 tháng 1 2022

Nguyễn Lê Phước Thịnh CTV, mk bảo làm câu c mà bạn

24 tháng 7 2019

Phương trình hoành độ giao điểm của (P) và (d) là:

\(x^2=mx-m+1\Rightarrow x^2-mx+m-1=0\)

\(\Delta=b^2-4ac=\left(-m\right)^2-4.1.\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\)

\(\left(m-2\right)^2\ge0\forall m\Rightarrow\Delta\ge0\forall m\)

Để (P) cắt (d) tại 2 điểm phân biệt\(\Leftrightarrow\Delta>\Leftrightarrow\left(m-2\right)^2>0\Leftrightarrow m-2\ne0\Leftrightarrow m\ne2\)

Áp dụng hệ thức vi-ét ta có:

\(x_1+x_2=\frac{-b}{a}=m;x_1.x_2=\frac{c}{a}=m-1\)

Theo bài ra ta có:

\(|x_1|+|x_2|=4\)

\(\Rightarrow\left(|x_1|+|x|_2\right)^2=16\)

\(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2+2|x_1.x_2|=16\)

\(\Rightarrow m^2-2\left(m-1\right)+2|m-1|=16\)

\(\Rightarrow m^2-2m+2+2|m-1|=16\)

\(\Rightarrow m^2-2m+2|m-1|=14\left(1\right)\)

\(+\)Nếu \(m\ge1\)Khi đó PT (1) có dạng:

\(m^2-2m+2+2m-2=16\Rightarrow m^2=16\Rightarrow\orbr{\begin{cases}m=4\left(TM\right)\\m=-4\left(L\right)\end{cases}}\)

\(+\)Nếu\(m< 1\)Khi đó PT (1) có dạng:

\(m^2-2m+2+2-2m=16\Rightarrow m^2-4m-12=0\Rightarrow\orbr{\begin{cases}m=6\left(L\right)\\m=-2\left(TM\right)\end{cases}}\)

Vậy...

27 tháng 4 2020

I don't know

5 tháng 6 2021

undefined