cho tam giác ABC nhọn,nội tiếp tâm O bán kính R. Biết rằng góc BOC=90 độ. Vẽ đường tròn tâm I đường kính BC cắt AB,AC tại M và N. Chứng minh rằng MN=R
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 nếu ai giải được thì làm ơn gửi cho mình cách giải nhé!!Mình cũng có bài này mà ko giải được
a, Xét (O) có
^BMC = ^BNC = 900 ( góc nt chắn nửa đường tròn )
=> ^AMD = ^AND = 900
Xét tứ giác AMDN có
^AMD + ^AND = 1800
mà 2 góc này đối
Vậy tứ giác AMDN nt 1 đương tròn
b, Ta có ^MAD = ^MND ( góc nt chắn cung MD của tứ giác AMDN )
mà ^MNB = ^MCB ( góc nt chắn cung MB )
Xét tứ giác OMC có OM = OC = R
Vậy tam giác OMC cân tại O
=> ^OMC = ^OCM
=> ^OMC = ^MAD
a) Ta có: ΔABC cân tại A
mà AH là đường cao ứng với cạnh BC
nên AH là đường trung tuyến ứng với cạnh BC
Ta có: AB=AC
nên A nằm trên đường trung trực của BC\(\left(1\right)\)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC\(\left(2\right)\)
Ta có: HB=HC
nên H nằm trên đường trung trực của BC(3)
Từ (1), \(\left(2\right),\left(3\right)\) suy ra A,O,H thẳng hàng
\(\Leftrightarrow A,O,H,D\) thẳng hàng
hay AD là đường kính của \(\left(O\right)\)
Hình vẽ:
Lời giải:
$\widehat{BAC}=\frac{1}{2}\widehat{BOC}(1)$
$\widehat{BAC}=\frac{1}{2}(\text{sđc(BC)}-\text{sđc(MN nhỏ)})=\frac{1}{2}(\text{sđc(MB) nhỏ}+\text{sđc(NC) nhỏ})=\frac{1}{2}(\widehat{MIB}+\widehat{NIC})(2)$
Từ $(1);(2)\Rightarrow \widehat{MIB}+\widehat{NIC}=90^0$
$\Rightarrow \widehat{MIN}=90^0=\widehat{OIC}$
$\Rightarrow \widehat{MIO}=\widehat{NIC}$
$\Rightarrow \text{cung(MO)}=\text{cung(NC)}$
$\Rightarrow ONCM$ là hình thang cân (hệ quả quen thuộc)
$\Rightarrow MN=OC=R$
Ta có đpcm.