Bài 3. Cho nửa đường tròn (O), đường kính AB = 2R. Vẽ đường tròn tâm K đường kính OB.
a) Chứng tỏ hai đường tròn (O) và (K) tiếp xúc nhau.
b) Vẽ dây BD của đường tròn (O) ( BD khác đường kính), dây BD cắt đường tròn (K) tại M.Chứng minh: KM // OD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔOAB cân tại O
mà OC là đường cao
nên OC là phân giác của góc AOB
Xét ΔOAC và ΔOBC có
OA=OB
góc AOC=góc BOC
OC chung
Do đó: ΔOAC=ΔOBC
=>góc OBC=90 độ
=>CB là tiếp tuyến của (O)
b: Xét (O) có
ΔBAD nôi tiếp
BD là đường kính
Do đó:ΔBAD vuông tại A
=>AD vuông góc với BA
=>AD//CB
a) Tam giác ABC nội tiếp đường tròn (O) đường kính BC
=> OA=OB=OC và O là trung điểm của BC
=> Tam giác ABC vuông tại A
=> góc BAC = 90 độ
b) DO tam giác HAK nội tiếp đường tròn (I)
Lại có góc HAK = 90 độ
=> HK là đường kính của (I)
=> HK đi qua I
=> H,I,K thẳng hàng
c) Đề bài ghi ko rõ
d) 3 điểm nào?
a: Xét (O) có
ΔBDC nội tiếp đường tròn
BC là đường kính
DO đó:ΔBDC vuông tại D
Xét ΔBCA vuông tại B có BD là đường cao ứng với cạnh huyền AC
nên \(AB^2=AD\cdot AC\)
tham khảo
a)Ta có: AC//BD(gt)
OH⊥AC(gt)
Do đó: OH⊥BD(Định lí 2 từ vuông góc tới song song)
Ta có: OH⊥BD(cmt)
OK⊥BD(gt)
mà OH và OK có điểm chung là O
nên H,O,K thẳng hàng(đpcm)
b) Vì đường tròn (O) có AB là đường kính(gt)
nên O là trung điểm của AB
hay OA=OB
Xét ΔAOH vuông tại H và ΔBOK vuông tại K có
OA=OB(cmt)
gocAOH=gocBOK(hai góc đối đỉnh)
Do đó: ΔAOH=ΔBOK(cạnh huyền-góc nhọn)
⇒AH=BK(hai cạnh tương ứng)
c) Ta có: ΔAOH=ΔBOK(cmt)
nên OH=OK(hai cạnh tương ứng)
Vì đường tròn (O) có CD là dây
nên OC=OD
Xét ΔCOH vuông tại H và ΔDOK vuông tại K có
OC=OD(cmt)
OH=OK(cmt)
Do đó: ΔCOH=ΔDOK(cạnh huyền-cạnh góc vuông)
⇒HC=KD(hai cạnh tương ứng)
Ta có: AC=AH+HC(H nằm giữa A và C)
BD=BK+DK(K nằm giữa B và D)
mà AH=BK(cmt)
và HC=DK(cmt)
nên AC=BD(đpcm)
cảm mơn nhìu ạ