K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2016

Đáp số là M > 1. Bạn cần cách giải không ?

29 tháng 2 2016

Co minh biet ket qua roi ban HiHI

27 tháng 2 2016

m = 3/2 = 1.5 >1

27 tháng 2 2016

kich mk di

diem mk thap qua

thank you

11 tháng 4 2017

kb đc 0

11 tháng 4 2017

2 câu đầu tôi làm đc

9 tháng 4 2018

Ta có : 

\(\frac{a}{b+c}>\frac{a}{a+b+c}\)

\(\frac{b}{c+a}>\frac{b}{a+b+c}\)

\(\frac{c}{a+b}>\frac{c}{a+b+c}\)

\(\Rightarrow\)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a+b+c}{a+b+c}\)

\(\Rightarrow\frac{a}{c+b}+\frac{b}{a+c}+\frac{c}{a+b}>1\)

Chúc bạn học tốt !!! 

9 tháng 4 2018

a/b+c > a/a+b+c           (1)

b/c+a > b/a+b+c           (2)

c/a+b > c/a+b+c           (3)

Lấy (1)+(2)+(3) ta có

a/b+c + b/c+a +c/a+b < 1

24 tháng 7 2015

\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

23 tháng 10 2018

\(S=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ca}\)

\(\Rightarrow S=\frac{abc}{abc+a+ab}+\frac{1}{1+b+bc}+\frac{abc}{abc+c.abc+ca}\)

\(S=\frac{abc}{a.\left(bc+b+1\right)}+\frac{1}{1+b+bc}+\frac{abc}{ac.\left(bc+b+1\right)}\)

\(S=\frac{bc}{bc+b+1}+\frac{1}{1+b+bc}+\frac{b}{bc+b+1}\)

\(S=\frac{bc+b+1}{bc+b+1}\)

\(S=1\)

Điều kiện \(c\ge0\);\(a;b>0\)

Ta có: \(a>b\)

\(\Rightarrow ac\ge bc\)

\(\Rightarrow ac+ab\ge bc+ab\)

\(a.\left(b+c\right)\ge b.\left(c+a\right)\)

\(\Rightarrow\frac{a+c}{b+c}\ge\frac{a}{b}\)

Tham khảo nhé~

7 tháng 7 2016

cần gấp mai sẽ lam cho

7 tháng 7 2016

\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)

\(=\left(1-\frac{b}{a+b}\right)+\left(1-\frac{c}{b+c}\right)+\left(1-\frac{a}{c+a}\right)\)

\(< 3-\left(\frac{b}{a+b+c}+\frac{c}{b+c+a}+\frac{a}{c+a+b}\right)=3-1=2\)

=>M < 2

27 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)