Cho tam giác ABC nội tiếp đường tròn (O),
AB < AC. Tia phân giác của góc A cắt BC ở D, cắt
đường tròn ở E. Trên tia AC lấy điểm K sao cho AK
= AB. Chứng minh rằng:
a) ∆ABD = ∆AKD
b) DKCE là tứ giác nội tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
câu d:
Tam giác BCF nội tiếp (O;BC/2) có cạnh BC là đường kính
=> Tam giác BCF vuông tại F
=>góc BFC=90 độ
Xét 2 tam giác: tam giác CHF và tam giác CFB có:
góc C chung
góc CHF=góc CFB (=90 độ)
Do đó, tam giác CHF đồng dạng với tam giác CFB (g.g)
=> góc CFH=góc CBF (1)
Tứ giác ABFC nội tiếp (O;BC/2)
=> góc CFH=góc ABC (cùng chắn cung AC) (2)
Từ (1) và (2)=> góc CBF=góc ABC (3)
Mà tia BC nằm giữa tia AB và BF (4)
Từ (3) và (4)=> BC là tia phận giác của góc ABF (đpcm)
b)
+ Xét đt (o) có
tứ giác BFACN nội tiếp đt
\(\rightarrow ABC\)=AFC ( 2 góc nt cùng chắn cung AC)
CÓ :
BD là tiếp tuyến đt (o) tại B(gt)
\(\rightarrow\) BD vuông góc BO (TC tiếp tuyến)
\(\rightarrow\)BD vuông góc BC (O thuộc BC)
\(\rightarrow\) DBC = 90(dn)
\(\rightarrow\)tam giác DBC vuông tại B
xét tam giác vuông DBC cso
BDC+DCB=90(2 góc phụ nhau trong tg vuông) (1)
+Xét đt (o) có:
BAC= 90 ( góc nt chắn nửa dtđk BC)
\(\rightarrow\)tam giác BAC vuông tại A
Xét tam giác vuông BAC có
ABC+ACB=90 (2 gọc phụ nhau trong tam giác vuông)
\(\rightarrow\) ABC+DCB=90(A thuộc DC ) (2)
từ(1) và(2) \(\rightarrow\) BDC=ABC( cùng phụ DCB)
Mà AFC=ABC(CMT)
\(\rightarrow\) BDC=AFC(=ABC)
+Có :
AFC+AFE=180( 2 góc kề bù)
Mà 2 góc ở vị trí đối nhau
\(\rightarrow\) tứ giác DEFA nội tiếp ( DHNB tứ giác nội tiếp)
|
a) ⇒ A ∈ đường tròn đường kính BC.
D ∈ đường tròn đường kính MC
⇒ D ∈ đường tròn đường kính BC
⇒ A, B, C, D cùng thuộc đường tròn đường kính BC
hay tứ giác ABCD nội tiếp.
b) Xét đường tròn đường kính BC:
đều là góc nội tiếp chắn cung
c) + Trong đường tròn đường kính MC:
đều là các góc nội tiếp cùng chắn cung
+ Trong đường tròn đường kính BC:
đều là các góc nội tiếp chắn cung