\(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\)
AI GIẢI GIÚP MÌNH ĐI ĐANG CẦN GẤP! PLEASE!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\)
<=> \(\left[x\left(x+1\right)\right]\left[\left(x-1\right)\left(x+2\right)\right]-24=0\)
<=> \(\left(x^2+x\right)\left(x^2+2x-x-2\right)-24=0\)
<=> \(\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)
Đặt t = x2 + x
<=> t(t - 2) - 24 = 0
<=> t2 - 2t - 24 = 0
<=> t2 - 6t + 4t - 24 = 0
<=> (t + 4)(t - 6) = 0
<=> \(\orbr{\begin{cases}x^2+x+4=0\\x^2+x-6=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x^2+x+\frac{1}{4}\right)+\frac{15}{4}=0\\x^2+3x-2x-6=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\\\left(x-2\right)\left(x+3\right)=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
Vậy S = {2; -3}
(lưu ý: thay "ktm" thành vô lý và giải thích thêm)
\(\left(x+3\right)^4+\left(x+5\right)^4=2\)
<=> (x + 4 - 1)4 + (x + 4 + 1)4 - 2 = 0
Đặt y = x + 4
<=> (y - 1)4 + (y + 1)4 - 2 = 0
<=> y4 - 4y3 + 6y2 - 4y + 1 + y4 + 4y3 + 6y2 + 4y + 1 - 2 = 0
<=> 2y4 + 12y2 = 0
<=> 2y2(y2 + 6) = 0
<=> \(\orbr{\begin{cases}y^2=0\\y^2+6=0\left(ktm\right)\end{cases}}\)
<=> y = 0
<=> x + 4 = 0
<=> x = -4
Vậy S = {-4}
\(\frac{x^2+x+4}{2}+\frac{x^2+x+7}{3}=\frac{x^2+x+13}{5}+\frac{x^2+x+16}{6}\)
<=> \(\frac{x^2+x+4}{2}-3+\frac{x^2+x+7}{3}-3=\frac{x^2+x+13}{5}-3+\frac{x^2+x+16}{6}-3\)
<=> \(\frac{x^2+x+4-6}{2}+\frac{x^2+x+7-9}{3}=\frac{x^2+x+13-15}{5}+\frac{x^2+x+16-18}{6}\)
<=> \(\frac{x^2+x-2}{2}+\frac{x^2+x-2}{3}=\frac{x^2+x-2}{5}+\frac{x^2+x-2}{6}\)
<=> \(\left(x^2+2x-x-2\right)\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{5}-\frac{1}{6}\right)=0\)
<=> (x + 2)(x - 1) = 0 (do \(\frac{1}{2}+\frac{1}{3}-\frac{1}{5}-\frac{1}{6}\ne0\))
<=> \(\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)
Vậy S = {-2; 1}
câu cuối: + 3 vào sau các phân số của pt như trên
\(\left(\frac{3}{4}-\frac{13}{11}+\frac{7}{5}\right)-\left(3-\frac{1}{2}-\frac{35}{11}\right)+\left(\frac{11}{4}-\frac{2}{5}\right)\)
= \(\frac{3}{4}-\frac{13}{11}+\frac{7}{5}-3+\frac{1}{2}+\frac{35}{11}+\frac{11}{4}-\frac{2}{5}\)
= \(\left(\frac{3}{4}+\frac{11}{4}+\frac{1}{2}\right)\left(-\frac{13}{11}+\frac{35}{11}\right)+\left(\frac{7}{5}-\frac{2}{5}\right)-3\)
= \(8+2+1-3\)
= \(8\)
#)Giải :
\(\left(\frac{3}{4}-\frac{13}{11}+\frac{7}{5}\right)-\left(3-\frac{1}{2}-\frac{35}{11}\right)+\left(\frac{11}{4}-\frac{2}{5}\right)\)
\(=\frac{3}{4}-\frac{13}{11}+\frac{7}{5}-3+\frac{1}{2}+\frac{35}{11}+\frac{11}{4}-\frac{2}{5}\)
\(=\left(\frac{3}{4}+\frac{11}{4}\right)+\left(-\frac{13}{11}+\frac{35}{11}\right)+\left(\frac{7}{5}-\frac{2}{5}\right)-3+\frac{1}{2}\)
\(=\frac{7}{2}+2+1-3+\frac{1}{2}\)
\(=\frac{7}{2}+\frac{1}{2}\)
\(=4\)
\(\frac{x+2}{x+3}-\frac{x+1}{x-1}=\frac{4}{\left(x-1\right)\left(x+3\right)}\left(x\ne-3;x\ne1\right)\)
\(\Leftrightarrow\frac{x+2}{x+3}-\frac{x+1}{x-1}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}-\frac{\left(x+1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{x^2+x-2}{\left(x+3\right)\left(x-1\right)}-\frac{x^2+4x+3}{\left(x-1\right)\left(x+3\right)}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{x^2+x-2-x^2-4x-3-4}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{-3x-9}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{-3\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{-3}{x-1}=0\)
=> PT vô nghiệm
PT <=> \(2x+\frac{6}{5}=5-\frac{13}{5}-x\)
<=> \(\frac{10x+6}{5}=\frac{25}{5}-\frac{13}{5}-\frac{5x}{5}\)
=> 10x + 6 = 25 - 13 - 5x
<=> 10x + 5x = 25 - 13 - 6
<=> 15x = 6
<=> x = 2/5
Vậy S = {2/5}.
\(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\)
<=> \(2x+\frac{6}{5}=\frac{12}{5}-x\)
<=> \(3x=\frac{6}{5}\) <=> \(x=\frac{2}{5}\)