K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2021

a: \(B=\dfrac{x^2+5x+5x+25}{x\left(x+5\right)}=\dfrac{x+5}{x}\)

16 tháng 3 2023

\(a,-3x^2+7x-9+\left(x-1\right)\left(x+2\right)\\ =-3x^2+7x-9+x^2-x+2x-2\\ =\left(-3x^2+x^2\right)+\left(7x-x+2x\right)-\left(9+2\right)\\ =-2x^2+8x-11\\ b,x\left(x-5\right)-2x\left(x+1\right)\\ =x^2-5x-2x^2-2x\\ =\left(x^2-2x^2\right)-\left(5x+2x\right)\\ =-3x^2-7x\\ c,4x\left(x^2-x+1\right)-\left(x-1\right)\left(x^2-x\right)\\ =4x^3-4x^2+4x-x\left(x^2-x\right)+x^2-x\\ =4x^3-4x^2+4x-x^3+x^2+x^2-x\\ =\left(4x^3-x^3\right)+\left(-4x^2+x^2+x^2\right)+\left(4x-x\right)\\ =3x^3-2x^2+3x\\ =x\left(3x^2-2x+3\right)\)

\(d,-5x\left(x-5\right)+\left(x-3\right)\left(x^2-7\right)\\ =-5x^2+25x+x\left(x^2-7\right)-3\left(x^2-7\right)\\ =-5x^2+25x+x^3-7x-3x^2+21\\ =\left(-5x^2-3x^2\right)+\left(25x-7x\right)+x^3+21\\ =-8x^2+x^3+18x+21\)

a: Ta có: \(P=\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{\sqrt{x}-1}{\sqrt{x}-x}+\dfrac{\sqrt{x}+3}{x+5\sqrt{x}+6}\)

\(=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}+2}\)

\(=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x-2-\sqrt{x}-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

9 tháng 12 2021

ok 

 

9 tháng 12 2021

ủa bài đâu hả bạn

 

23 tháng 12 2019

a) \(A=5x\left(4x^2-2x+1\right)-2x\left(10x^2-5x-2\right)\)

\(A=20x^3-10x^2+5x-20x^3+10x^2+4x\)

\(A=9x\)

Thay x = 15 vào, ta có: 

\(A=9.15=135\)

b) \(B=5x\left(x-4y\right)-4y\left(y-5x\right)\)

\(B=5x^2-20xy-4y^2+20xy\)

\(B=5x^2-4y\)

Thay \(x=-\frac{1}{5};y=-\frac{1}{2}\) vào, ta có: 

\(B=5.\left(-\frac{1}{5}\right)^2-4.\left(-\frac{1}{2}\right)=\frac{11}{5}\)

c) \(C=6xy\left(xy-y^2\right)-8x^2\left(x-y^2\right)-5y^2\left(x^2-xy\right)\)

\(C=6x^2y^2-6xy^3-8x^3+8x^2y^2-5x^2y^2+5xy^3\)

\(C=9x^2y^2-xy^3-8x^3\)

Thay \(x=\frac{1}{2};y=2\) vào, ta có:

\(C=9.\left(\frac{1}{2}\right)^2.2^2-\frac{1}{2}.2^3-8.\left(\frac{1}{2}\right)^3=4\)

d) \(D=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\)

\(D=6x^2-3x+10x-5+12x^2+8x-3x-2\)

\(D=18x^2+12x-7\)

Ta có: \(\left|2\right|=\orbr{\begin{cases}x=-2\\x=2\end{cases}}\)

+) Với x = -2

\(D=18.\left(-2\right)^2+12.\left(-2\right)-7=41\)

+) Với x = 2

\(D=18.2^2+12.2-7=89\)

12 tháng 12 2020

a) Ta có: \(B=\dfrac{x^2}{5x+25}+\dfrac{2\left(x+5\right)}{x}+\dfrac{50+5x}{x\left(x+5\right)}\)

\(=\dfrac{x^2}{5\left(x+5\right)}+\dfrac{2\left(x+5\right)}{x}+\dfrac{50+5x}{x\left(x+5\right)}\)

\(=\dfrac{x^3}{5x\left(x+5\right)}+\dfrac{10\left(x+5\right)^2}{5x\left(x+5\right)}+\dfrac{250+25x}{5x\left(x+5\right)}\)

\(=\dfrac{x^3+10x^2+100x+250+250+25x}{5x\left(x+5\right)}\)

\(=\dfrac{x^3+10x^2+125x+500}{5x\left(x+5\right)}\)

\(=\dfrac{x^3+5x^2+5x^2+25x+100x+500}{5x\left(x+5\right)}\)

\(=\dfrac{x^2\left(x+5\right)+5x\left(x+5\right)+100\left(x+5\right)}{5x\left(x+5\right)}\)

\(=\dfrac{\left(x+5\right)\left(x^2+5x+100\right)}{5x\left(x+5\right)}\)

\(=\dfrac{x^2+5x+100}{5x}\)

b) Thay x=-2 vào biểu thức \(B=\dfrac{x^2+5x+100}{5x}\), ta được:

\(B=\dfrac{\left(-2\right)^2+5\cdot\left(-2\right)+100}{-5\cdot2}=\dfrac{4+100-10}{-10}=\dfrac{94}{-10}=-\dfrac{94}{10}=\dfrac{-47}{5}\)

Vậy: Khi x=-2 thì \(B=-\dfrac{47}{5}\)

a: \(P=\left(\dfrac{x}{\left(x-5\right)\left(x+5\right)}-\dfrac{x-5}{x\left(x+5\right)}\right)\cdot\dfrac{x\left(x+5\right)}{2x-5}+\dfrac{x^2}{5-x}\)

\(=\dfrac{x^2-x^2+10x-25}{\left(x-5\right)\left(x+5\right)}\cdot\dfrac{x\left(x+5\right)}{2x-5}-\dfrac{x^2}{x-5}\)

\(=\dfrac{5\left(2x-5\right)\cdot x}{\left(x-5\right)\left(2x-5\right)}-\dfrac{x^2}{x-5}=\dfrac{5x-x^2}{x-5}=-x\)

b: Để P là số nguyên thì x là số nguyên

20 tháng 5 2022

sai r bạn ơi

11 tháng 4 2022

98

11 tháng 4 2022

98