Cho góc AOB số đo là 135 .Vẽ tia OC ở trong góc đó sao cho góc AOC là góc vuông. Vẽ tia OD là tia phân giác của góc AOC. Chứng tỏ rằng: a)góc BOD là góc vuông; b)Tia ÓC là tia phân giác của góc BOD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này rất dễ: a) Ta có AOC + COB = AOB (2 góc kề)
90 + COB = 135
COB = 135 - 90 = 45
Vì OD là tia phân giác của AOC nên
AOD = DOC = 90/2 = 45
=>COB + DOB = 45 + 45 = 90 = DOB
Vậy DOB là góc vuông.
b) Ta có COD = BOC = 45
Mà OC nằm trong BOD => OC nằm giữa 2 tia OD và OB
Do đó OC là tia phân giác BOD
Hình tự vẽ nha bạn
Ta có: ∠ AOC + ∠ BOC = ∠ AOB
⇒ 60o + ∠ BOC = 90o
⇒ ∠ BOC = 30o (1)
Lại có: ∠ BOC + ∠ COD = ∠ BOD
⇒ 30o + ∠COD = 60o
⇒ ∠ COD = 30o (2)
Từ (1) và (2) ⇒ ∠ BOC = ∠ COD = 30o
Suy ra: OC là phân giác của ∠ BOD
Ta có: ∠ COD + ∠ AOD = ∠ AOC
⇒ 30o + ∠ AOD = 60o
⇒ ∠ AOD = 30o
Vì ∠ COD = ∠ AOD = 30o nên OD là phân giác của ∠ AOC
b) Vì OB là phân giác của DOE nên ∠ BOD = ∠ BOE = 60\(^0\)
Ta có: ∠ BOC + ∠ BOE = ∠ COE
⇒ 30o + 60o = ∠ COE
⇒ ∠ COE = 90o
⇒ OC ⊥ OE ( đpcm )
a) Ta có : \(\widehat{AOC}+\widehat{COB}=180^o\)( kề bù )
\(135^o+\widehat{COB}=180^o\)
\(\widehat{COB}=180^o-135^o\)
\(\widehat{COB}=45^o\)
Ta có : \(\widehat{BOC}+\widehat{COD}=\widehat{BOD}\)
\(45^o+\widehat{COD}=135^o\)
\(\widehat{COD}=135^o-45^o\)
\(\widehat{COD}=90^o\)
Ta có : \(\widehat{DOC}+\widehat{COE}=180^o\)( kề bù )
\(90^o+\widehat{COE}=180^o\)
\(\widehat{COE}=90^o\)
\(\Rightarrow OC\perp OE\)
b) Ta có : \(\widehat{COB}+\widehat{BOE}=\widehat{COE}\)
\(45^o+\widehat{BOE}=90^o\)
\(\widehat{BOE}=90^o-45^o\)
\(\widehat{BOE}=45^o\)
\(\Rightarrow\widehat{BOE}=\widehat{COB}=\frac{\widehat{COE}}{2}\)
Vậy OB là tia phân giác của \(\widehat{COE}\)
Bài giải
Ta có : \(\widehat{AOC}=\widehat{BOD}\left(=135^o\right)\)
\(\widehat{DOC}\) chung và OC và OD cùng nằm trên cùng một nửa mặt phẳng nên \(\widehat{DOA}=\widehat{COB}\)
Mà \(\widehat{DOA}=\widehat{EOB}\) ( hai góc đối đỉnh ) nên \(\widehat{BOC}=\widehat{BOE}\)
\(\Rightarrow\text{ }OB\text{ là tia phân giác }\widehat{COE}\)
Ta có : \(\widehat{BOE}\) và \(\widehat{BOD}\) kề bù nên \(\widehat{BOE}+\widehat{BOD}=180^o\)
\(\Rightarrow\text{ }\widehat{BOE}+135^o=180^o\text{ }\Rightarrow\text{ }\widehat{BOE}=45^o\)
Ta lại có : \(\widehat{COD}+\widehat{COE}=180^o\)
\(\widehat{COD}+90^o=180^o\)
\(\widehat{COD}=90^o\)
\(\text{ }\Rightarrow\text{ }OC\perp OE\)