1 phần 2019 mũ 2 - 1 phần 2020 mũ 2 = ? Mn ghi rõ cách làm giúp mik với ạh! Thanks😅
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(b-a=9.10^{2019}-\dfrac{9}{10^{2021}}>0\Rightarrow b>a\).
\(23\left(x-1\right)+19=65\)
\(23\left(x-1\right)=65-19\)
\(23\left(x-1\right)=46\)
\(x-1=46:23\)
\(x-1=2\)
\(x=2+1\)
\(x=3\)
\(5x+3x=88\)
\(x\left(5+3\right)=88\)
\(x.8=88\)
\(x=88:8\)
\(x=11\)
\(x^3=64\)
\(x^3=4^3\)
\(\Rightarrow x=4\)
\(\left(5x-4\right):7-2=6\)
\(\left(5x-4\right):7=6+2\)
\(\left(5x-4\right):7=8\)
\(5x-4=8.7\)
\(5x-4=56\)
\(5x=56+4\)
\(5x=60\)
\(x=60:5\)
\(x=12\)
\(x^{50}=x\)
\(\Rightarrow x=1\)
\(4.2^x-3=125\)
\(4.2^x=125+3\)
\(4.2^x=128\)
\(2^x=128:4\)
\(2^x=32\)
\(2^x=2^5\)
\(\Rightarrow x=5\)
k mk nha
\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
Gọi A = \(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
=> A = \(\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}\)
A < \(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
A < \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
A < \(\frac{1}{2}-\frac{1}{100}\)
A < \(\frac{49}{100}< \frac{50}{100}=\frac{1}{2}\)
=> A < \(\frac{1}{2}\)
<=> \(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
\(\dfrac{1}{2019^2}-\dfrac{1}{2020^2}=\dfrac{2020^2-2019^2}{2019^2\cdot2020^2}\\ =\dfrac{\left(2020-2019\right)\left(2020+2019\right)}{2019^2\cdot2020^2}=\dfrac{4039}{2019^2\cdot2020^2}\)