Cho tam giác ABC các đường trung tuyến BD và CE cắt nhau ở G. Gọi H là đường trung điểm của GB, K là trung điểm của GC.
a. Chứng minh: Tứ giác DEHK là hình bình hành.
b. Nếu tam giác ABC cân tại A. Chứng minh: BD=CE và DEHK là hình chữ nhật.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
BD là đường trung tuyến của Δ ABC nên D là trung điểm của AC (1)
CE là đường trung tuyến của Δ ABC nên E là trung điểm của AB (2)
Từ (1) và (2) suy ra :
DE là đường trung bình của Δ ABC
=> DE // BC và DE = 1/2 BC
Δ BGC có H là trung điểm của GB và K là trung điểm của GC
suy ra HK là đường trung bình của Δ BGC
=> HK // BC và HK = 1/2 BC
Tứ giác DEHK có DE//BC, HK // BC và DE = HK = 1/2 BC
nên tứ giác
b) DEHK là hình bình hành nên
HG = GD = 1/2 HD và GE = GK = 1/2 EK
Để tứ giác DEHK là hình chữ nhật thì
HD = EK => 1/2 HD = 1/2 EK => GE = GD và GH = GK
GH = GK => 2GH = 2GK => GB = GC
Xét Δ GEB và Δ GDC có
GE = GD Góc EGB = góc DGC GB = GC => ΔGEB = ΔGDC (c.g.c) => BE = CD => 2BE = 2CD => AB = AC => ΔABC cân tại A Vậy đểtứ giác DEHK là hình chữ nhật thì
ΔABC cân tại Ac) BD ⊥ CE => HD ⊥ EK Hình bình hành DEHK có HD ⊥ EK nên DEHK là hình thoi Vậy
nếu các đường trung tuyến BD và CE vuông góc với nhau thì tứ giác DEHK là hình thoi
Tam giác ABC có hai đường trung tuyến BD và CE cắt nhau tại G nên G là trọng tâm tam giác ABC.
Ta có: GD = 1/2 GB (tính chất đường trung tuyến của tam giác)
GH = 1/2 GB (gt)
Suy ra: GD = GH
GE = 1/2 GC (tính chất đường trung tuyến của tam giác)
GK = 1/2 GC
Suy ra GE = GK
Tứ giác DEHK là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường).
Sửa đề: Đường trung tuyến BD
a) Ta có: BD và CE lần lượt là các đường trung tuyến ứng với các cạnh AC,AB trong ΔABC(gt)
nên E là trung điểm của AB và D là trung điểm của AC
Xét ΔABC có
E là trung điểm của AB(cmt)
D là trung điểm của AC(cmt)
Do đó: ED là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra: ED//BC và \(ED=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)
Xét ΔGBC có
H là trung điểm của GB(gt)
K là trung điểm của GC(gt)
Do đó: HK là đường trung bình của ΔGBC(Định nghĩa đường trung bình của tam giác)
Suy ra: HK//BC và \(HK=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)
Từ (1) và (2) suy ra ED//HK và ED=HKXét tứ giác EDKH có
ED//HK(cmt)
ED=HK(cmt)
Do đó: EDKH là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Sửa đề: Đường trung tuyến BD
a) Ta có: BD và CE lần lượt là các đường trung tuyến ứng với các cạnh AC,AB trong ΔABC(gt)
nên E là trung điểm của AB và D là trung điểm của AC
Xét ΔABC có
E là trung điểm của AB(cmt)
D là trung điểm của AC(cmt)
Do đó: ED là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra: ED//BC và ED=BC2ED=BC2(Định lí 2 về đường trung bình của tam giác)(1)
Xét ΔGBC có
H là trung điểm của GB(gt)
K là trung điểm của GC(gt)
Do đó: HK là đường trung bình của ΔGBC(Định nghĩa đường trung bình của tam giác)
Suy ra: HK//BC và HK=BC2HK=BC2(Định lí 2 về đường trung bình của tam giác)(2)
Từ (1) và (2) suy ra ED//HK và ED=HKXét tứ giác EDKH có
ED//HK(cmt)
ED=HK(cmt)
Do đó: EDKH là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Nếu BD ⊥ CE ⇒ DH ⊥ EK
Hình bình hành DEHK có hai đường chéo vuông góc nên nó là hình thoi.
\(a,\) Vì E,D là trung điểm AB,AC nên ED là đường trung bình tam giác ABC
Do đó \(ED//BC;ED=\dfrac{1}{2}BC(1)\)
Vì H,K là trung điểm GB,GC nên HK là đường trung bình tam giác BGC
Do đó \(HK//BC;HK=\dfrac{1}{2}BC(2)\)
Từ \((1)(2)\Rightarrow HK//ED;HK=ED\)
Vậy DEHK là hình bình hành
\(b,\Delta ABC\) cân tại A nên \(AB=AC\Rightarrow \dfrac{1}{2}AB=\dfrac{1}{2}AC\)
\(\Rightarrow AE=EB=AD=DC\)
Ta có \(AB=AC;AE=AD;\widehat{BAC}\) chung
\(\Rightarrow \Delta ADB=\Delta AEC(c.g.c)\\ \Rightarrow BD=EC\)
Lại có G là trọng tâm tam giác ABC nên \(CK=KG=GE=\dfrac{1}{3}CE\)
\(BH=HG=GD=\dfrac{1}{3}BD\)
Do đó \(KG+GE=HG+GD(\dfrac{2}{3}BD=\dfrac{2}{3}CE)\)
\(\Rightarrow EK=HD\)
Vậy DEHK là hình chữ nhật