Tìm tất cả các số nguyên x, y thỏa mãn:
x^2-xy=5x-4y-9
Trình bày đầy đur nha, mình cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm x,y thõa mãn:x^2-5x+6+xy-2y=0 và x^2+y^2=5
tính giùm mình nha (làm đầy đủ)
cần lắm cảm ơn nhiều!!!
a) => 2xy +3x=y+1
=> 2xy+3x-y=1
=> x(2y+3) - 1/2 (2y+3) +3/2 =1
=> (x-1/2)(2y+3)=1-3/2= -1/2
=> (2x-1)(2y+3)=-1
ta có bảng
...........
Biến đổi bt tương đương : (x^2-1)/2 =y^2
Ta có: vì x,y là số nguyên dương nên
+) x>y và x phải là số lẽ.
Từ đó đặt x=2k+1 (k nguyên dương);
Biểu thức tương đương 2*k*(k+1)=y^2 (*);
Để ý rằng:
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là :
{1,y, y^2} ;
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1;
=>x=3.
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).
x(2y+3) = y +1 => y+1 chia hết cho 2y +3
=> 2y + 2 chia hết cho 2y +3
=> 2y + 3 - 1 chia hết cho 2y + 3
=> -1 chia hết cho 2y +3
=> 2y + 3 = -1
2y +3 = -1 = > y = -2 => -x = -1 => x=1
2y + 3 = 1 => y = 1 => x = 0
Ta có : x .( 2y+ 3 ) = y + 1
=> ( y + 1 ) \(⋮\)( 2y + 3 )
=> \(\left(2y+2\right)⋮\left(2y+3\right)\)
=> ( 2y + 3 - 1 ) \(⋮\) ( 2y+ 3 )
=> - 1 \(⋮\) ( 2y + 3 )
=> ( 2y+ 3 ) \(\in\left\{1;-1\right\}\)
TH1 :
2y + 3 =-1 <=> y = -2
=> x = 1
TH2 :
2y + 3 = 1 <=> y = -1
=> x = 0
Vậy ta có các cặp số nguyên ( x , y ) thỏa mãn là : ( 0 , -1 ) ; ( 1 ; -2 )