K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2021

13 tháng 12 2021

NV
23 tháng 12 2022

a.

Do N là trọng tâm tam giác ABC \(\Rightarrow\) N là giao điểm AK và BO

Hay A,N,K,F thẳng hàng

\(\Rightarrow\left(AMN\right)\cap\left(SCD\right)=MF\)

b.

Trong mp (SCD) nối FM kéo dài cắt SD tại I

Dễ dàng nhận thấy \(SO=\left(SAC\right)\cap\left(SBD\right)\)

\(\left\{{}\begin{matrix}M\in SC\in\left(SAC\right)\\M\in\left(AMN\right)\end{matrix}\right.\) \(\Rightarrow AM=\left(SAC\right)\cap\left(AMN\right)\)

\(N\in BD\in\left(SBD\right)\Rightarrow N\in\left(AMN\right)\cap\left(SBD\right)\)

\(\left\{{}\begin{matrix}I\in SD\in\left(SBD\right)\\I\in\left(AMN\right)\end{matrix}\right.\) \(\Rightarrow IN=\left(SBD\right)\cap\left(AMN\right)\)

\(\Rightarrow\) 3 mặt phẳng (AMN), (SAC), (SBD) cắt nhau theo 3 giao tuyến phân biệt SO, AM, IN nên 3 đường thẳng này song song hoặc đồng quy

Mà SO cắt AM tại E \(\Rightarrow SO;AM;NI\) đồng quy tại E

Hay N;E;I thẳng hàng

M là trung điểm SC, O là trung điểm AC \(\Rightarrow\) E là trọng tâm tam giác SAC

\(\Rightarrow\dfrac{OE}{OS}=\dfrac{1}{3}\)

Theo giả thiết N là trọng tâm ABC \(\Rightarrow\dfrac{ON}{OB}=\dfrac{1}{3}\)

\(\Rightarrow\dfrac{OE}{OS}=\dfrac{ON}{OB}\Rightarrow EN||SB\Rightarrow NI||SB\Rightarrow NI||\left(SBC\right)\)

NV
23 tháng 12 2022

c.

Do \(CF||AB\), áp dụng định lý Talet:

\(\dfrac{KF}{AK}=\dfrac{KC}{KB}=1\Rightarrow KF=AK\)

Do \(AD||BK\) \(\Rightarrow\dfrac{KN}{AN}=\dfrac{BK}{AD}=\dfrac{1}{2}\Rightarrow KN=\dfrac{1}{2}AN\)

\(\Rightarrow KN=\dfrac{1}{2}\left(AK-KN\right)\Rightarrow KN=\dfrac{1}{3}AK=\dfrac{1}{3}KF\)

\(\Rightarrow KF=3KN=3\left(NF-KF\right)\)

\(\Rightarrow KF=\dfrac{3}{4}NF\)

Theo giả thiết M, K lần lượt là trung điểm SC, BC \(\Rightarrow MK\) là đường trung bình tam giác SBC

\(\Rightarrow MK||SB\Rightarrow MK||IN\) (theo c/m câu b)

Áp dụng định lý Talet:

\(\dfrac{KM}{IN}=\dfrac{KF}{NF}=\dfrac{3}{4}\Rightarrow KM=\dfrac{3}{4}IN\)

\(\Rightarrow d\left(M;AF\right)=\dfrac{3}{4}d\left(I;AF\right)\)

\(\Rightarrow\dfrac{S_{\Delta FKM}}{S_{\Delta KAI}}=\dfrac{\dfrac{1}{2}.d\left(M;KF\right).KF}{\dfrac{1}{2}d\left(I;AK\right).AK}=\dfrac{3}{4}.1=\dfrac{3}{4}\)

22 tháng 12 2020

Hình câu c là tui vẽ riêng ra cho dễ nhìn thôi, còn hình vẽ trình bày vô bài lấy hình chung ở câu a và b nhó :v     

                  undefined undefined

 

23 tháng 12 2020

cảm ơn bạn nha

13 tháng 10 2018

29 tháng 8 2019


1 tháng 12 2018

Từ (1) (2) và (3) suy ra ba điểm F, G, H thuộc giao tuyến của hai mặt phẳng (MNP) và (ABCD).

Do đó ba điểm F, G, H thẳng hàng và G nằm giữa F và H.

Chọn C.