a) cho x^2+y^2=2(2x-3y)-13 .Tìm A= (5x+2y)^2021
b)cho x-y=2.Tìm A= x^2+y^2-2x+4y
giúp mình vs cần gấp !!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a.\(\Leftrightarrow7x-5x=3+12\)
\(\Leftrightarrow2x=15\Leftrightarrow x=\dfrac{15}{2}\)
b.\(\Leftrightarrow6x-10-7x-7=2\)
\(\Leftrightarrow x=-19\)
c.\(\Leftrightarrow1-3x=4x-3\)
\(\Leftrightarrow7x=2\Leftrightarrow x=\dfrac{2}{7}\)
d.\(\Leftrightarrow8x^2-4x+12x-6-8x^2-8x-2=12\)
\(\Leftrightarrow-2=12\left(voli\right)\)
`{(2x+3y=3+a),(x+2y=a):}`
`<=>{(x=a-2y),(2(a-2y)+3y=3+a):}`
`<=>{(x=a-2y),(2a-4y+3y=3+a):}`
`<=>{(x=a-2y),(y=a-3):}`
`<=>{(x=a-2(a-3)=6-a),(y=a-3):}`
Thay `x;y` vào `x^2+y^2=17` có:
`(6-a)^2+(a-3)^2=17`
`<=>36-12a+a^2+a^2-6a+9=17`
`<=>2a^2-18a+28=0`
`<=>a^2-9a+14=0`
`<=>a^2-2a-7a+14=0`
`<=>(a-2)(a-7)=0`
`<=>` $\left[\begin{matrix} a=2\\ a=7\end{matrix}\right.$
Vậy `a in {2;7}` thì `x^2+y^2=17`
b: x-y=2
=>x=y+2
\(A=y^2+4y+4+y^2-2y+4+4y=2y^2+6y+8\)