cho hình tam giác abc vuông góc ở a, có cạnh ab =6cm,ac=8cm. Tính cạnh bc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Chu vi tam giác ABC là:
\(C_{ABC}=AB+AC+BC=6+8+10=24\left(cm\right)\)
b) Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABD=ΔHBD(Cạnh huyền-góc nhọn)
a/ \(BD\) là đường phân giác \(\widehat{BAC}\)
\(\to\dfrac{DA}{DC}=\dfrac{BA}{BC}\) hay \(\dfrac{DA}{DC}=\dfrac{6}{10}=\dfrac{3}{5}\)
\(\to\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{AC}{8}=\dfrac{8}{8}=1\)
\(\to\begin{cases}DA=3\\DC=5\end{cases}\)
b/ \(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.AH.BC\)
\(\to AB.AC=AH.BC\)
\(\to \dfrac{AB.AC}{BC}=AH=\dfrac{6.8}{10}=3,2(cm)\)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot10=6\cdot8=48\)
hay AH=4,8(cm)
Vậy: AH=4,8cm
a, Theo định lí Pytago ta đc
\(BC=\sqrt{AB^2+AC^2}=10cm\)
Vì AE là pg nên
\(\dfrac{AB}{AC}=\dfrac{BE}{CE}\Rightarrow\dfrac{CE}{AC}=\dfrac{BE}{AB}\)
Theo tc dãy tỉ số bằng nhau ta có
\(\dfrac{CE}{AC}=\dfrac{BE}{AB}=\dfrac{10}{14}=\dfrac{5}{7}\Rightarrow CE=\dfrac{40}{7}cm;BE=\dfrac{30}{7}cm\)
b, Vì EF // BC Theo hệ quả Ta lét \(\dfrac{EC}{BC}=\dfrac{EF}{AB}\Rightarrow EF=\dfrac{EC.AB}{BC}=\dfrac{24}{7}cm\)
hình bạn tự vẽ nha
a) xét tam giác ABC vông tại A ,áp dụng định lý py-ta-go có:
BC^2=AB^2+AC^2
=>BC^2=6^2+8^2
=>BD^2=100
=>BD=10 cm
xét tam giác ABC vuông tại A có AD là đường trung tuyến ứng với cạnh huyên BC
=>AD=1/2BD(định lý)
=>AD=1/2 . 10=5CM
b)xét tứ giác AMDN có góc A = 90 độ(tam giác ABC vuông tại A)
góc AMD=90 độ (DM vuông góc AB)
góc DNA=90 độ (DN vuông góc với AC)
=>tứ giác AMDN là hình chữ nhật
yêu cầu các bạn ghi ra thứ tự lời giải rõ ràng.
ssssssssssssssssssssssss