Tính :
a) \(S=\frac{1}{5}+\frac{1}{20}+\frac{1}{44}+...+\frac{1}{1175}\)
b)\(S=1\frac{1}{3}.1\frac{1}{8}.1\frac{1}{15}.1\frac{1}{24}.1\frac{1}{35}.....1\frac{1}{9800}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}.\frac{25}{24}.\frac{36}{35}......\frac{9801}{9800}=\frac{\left(2.3.4.5....99\right)^2}{1.3.2.4.3.5.4.6.....98.100}=\frac{2.3.4.5...99}{1.2.3.4.....98}.\frac{2.3.4.5....99}{3.4.5.6......100}=\frac{99}{1}.\frac{2}{100}=\frac{99}{50}\)
\(1\frac{1}{3}.1\frac{1}{8}.1\frac{1}{15}....1\frac{1}{9800}=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}....\frac{9801}{9800}\)
\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}....\frac{99.99}{98.100}\)
\(=\frac{2.3.4...99}{1.2.3....98}.\frac{2.3.4...99}{3.4.5...100}\)
\(=99.\frac{2}{100}=99.\frac{1}{50}=\frac{99}{50}\)
2S=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{13}-\frac{1}{15}\)
=\(1-\frac{1}{15}=\frac{14}{15}\)
\(\Rightarrow S=\frac{7}{15}\)
a. Ta có:A= 1/1.3+1/3.5+1/5.7+1/7.9+1/9.11+1/11.13+1/13.15
A=1/2(1/1.3+1/3.5+1/5.7+1/7.9+1/9.11+1/11.13+1/13.15)
A=1/2(1/1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+1/11-1/13+1/13-1/15)
A=2(1-1/15)
A=1/2.14/15
A=7/15
a, Câu hỏi của Nguyễn Ánh Ngân - Toán lớp 6 - Học toán với OnlineMath
b, Câu hỏi của Vũ Xuân Hiếu - Toán lớp 6 | Học trực tuyến
c)
a: \(=\left(-\dfrac{25}{140}+\dfrac{245}{140}+\dfrac{32}{140}\right)\cdot\dfrac{-69}{20}\)
\(=\dfrac{252}{140}\cdot\dfrac{-69}{20}\)
\(=\dfrac{9}{5}\cdot\dfrac{-69}{20}=\dfrac{-621}{100}\)
b: \(=\left(6-2-\dfrac{4}{5}\right)\cdot\dfrac{25}{8}-\dfrac{8}{5}\cdot4\)
\(=\dfrac{16}{5}\cdot\dfrac{25}{8}-\dfrac{32}{5}=\dfrac{18}{5}\)
c: \(=\left(\dfrac{2}{24}+\dfrac{18}{24}+\dfrac{14}{24}\right):\dfrac{-17}{8}\)
\(=\dfrac{34}{24}\cdot\dfrac{-8}{17}=\dfrac{-1}{3}\cdot2=-\dfrac{2}{3}\)