K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2021

a: Xét ΔBAD có 

E là tđiểm của AB

H là tđiểm của BD

Do đó: EH là đường trung bình của ΔABD

Suy ra: EH//AD và EH=AD/2(1)

Xét ΔACD có

F là trung điểm của AC

G là trung điểm của CD
Do đó: FG là đường trung bình của ΔACD

Suy ra: FG//AD và FG=AD/2(2)

Từ (1) và (2) suy ra EH//GF và EH=GF

hay EFGH là hình bình hành

14 tháng 9 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét tam giác ABC:

Ta có: EB = EA, FA = FC (gt)

Nên EF là đường trung bình của tam giác ABC

Nên EF // BC, EF = 1/2 BC.

Xét tam giác BDC có

HB = HD, GD = GC (gt)

Nên HG là đường trung bình của tam giác BDC

Nên HG // BC, HG = 1/2 BC.

Do đó EF //HG, EF = HG.

Tương tự EH // FG, EH = FG

Vậy EFGH là hình bình hành.

EFGH là hình chữ nhật ⇔ EH ⊥ EF ⇔ AD ⊥ BC

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

17 tháng 6 2018

Chứng minh EFGH là hình bình hành. Để EFGH là hình chữ nhật thì

Þ H E F ^ = 90 0 ⇒ H E ⊥   E F  

Þ AC ^BD.

14 tháng 5 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Ta có EF là đường trung bình của ∆ ABC

Suy ra: EF //AC và EF = 1/2 AC (1)

* Trong  ∆ ADC có HG là đường trung bình

Suy ra: HG // AC và HG = 1/2 AC (2)

Từ (l) và (2) suy ra EF // HG và EF = HG

Vậy tứ giác EFGH là hình bình hành.

Tứ giác EFGH là hình chữ nhật ⇔ EH ⊥ EF ⇔ AC ⊥ BD

6 tháng 11 2021

E, F lần lượt là trung điểm của AB và BC (gt)

\(\Rightarrow\) EF là đường trung bình của tam giác ABC

\(\Rightarrow\) EF // AC và EF = \(\frac{1}{2}\) AC (1)

H, G lần lượt là trung điểm của AD và DC (gt)


\(\Rightarrow\) HG là đường trung bình của tam giác ACD

\(\Rightarrow\) HG // AC và HG = \(\frac{1}{2}\) AC (2)

Từ (1) và (2) \(\Rightarrow\) EF // HG và EF = HG

\(\Rightarrow\) Tứ giác EFGH là hình bình hành

Tứ giác EFGH là hình bình hành. EF // AC, EF = \(\frac{1}{2}\) AC 

Ta còn có EH là đường trung bình của tam giác ABD

\(\Rightarrow\) EH // BD và EH = \(\frac{1}{2}\) BD

- Tứ giác EFGH là hình chữ nhật

\(\Leftrightarrow\) Hình bình hành EFGH có: 

\(\widehat{HEF}=90^o\)

\(\Leftrightarrow HE\perp EF\)

\(\Leftrightarrow EH\perp AC\)

\(\Leftrightarrow AC\perp BD\)

Vậy tứ giác ABCD cần thêm điều kiện hai đường chéo AC và BD vuông góc với nhau thì tứ giác EFGH là hình chữ nhật

- Tứ giác EFGH là hình thoi

\(\Leftrightarrow\) Hình bình hành EFGH có: EF = EH \(\Leftrightarrow\) AC = BD

Vậy tứ giác ABCD cần thêm điều kiện hai đường chéo AC và BD bằng nhau thì tứ giác EFGH là hình thoi

- Tứ giác EFGH là hình vuông

\(\Leftrightarrow\) Hình chữ nhật EFGH có: EF = EH \(\Leftrightarrow\) AC = BD

Vậy tứ giác ABCD cần thêm điều kiện hai đường chéo AC và BD vuông góc và bằng nhau thì tứ giác EFGH là hình vuông

G C D H A E B F Yen Nhi

14 tháng 6 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét tam giác ABC:

Ta có: EB = EA, FA = FC (gt)

Nên EF là đường trung bình của tam giác ABC

Nên EF // BC, EF = 1/2 BC.

Xét tam giác BDC có

HB = HD, GD = GC (gt)

Nên HG là đường trung bình của tam giác BDC

Nên HG // BC, HG = 1/2 BC.

Do đó EF //HG, EF = HG.

Tương tự EH // FG, EH = FG

Vậy EFGH là hình bình hành.

EFGH là hình vuông khi và chỉ khi EFGH là hình chữ nhật đồng thời là hình thoi

⇔ AD ⊥ BC và AD = BC

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

30 tháng 11 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét tam giác ABC:

Ta có: EB = EA, FA = FC (gt)

Nên EF là đường trung bình của tam giác ABC

Nên EF // BC, EF = 1/2 BC.

Xét tam giác BDC có

HB = HD, GD = GC (gt)

Nên HG là đường trung bình của tam giác BDC

Nên HG // BC, HG = 1/2 BC.

Do đó EF //HG, EF = HG.

Tương tự EH // FG, EH = FG

Vậy EFGH là hình bình hành.

EFGH là hình thoi ⇔ EH = EF ⇔ AD = BC

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

19 tháng 12 2022

c