K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:Cho tam giác ABC vuông tại A,có AC=3AB.Trên AC lấy D và E cho AD=DE=EC.Tính tổng các góc BCA,góc BAD,góc BEABài 2:Cho tam giác ABC,có góc ABC=70 độ ,góc ACB=30 độ.Trên AB lấy M sao cho goc MCB =40 độ.Trên cạnh AC lấy N sao cho góc NBC=50 độ.Tính góc MNCBài 3:Lấy 3 cạnh BC,CA,BA của tam giác ABC làm canh AC làm cạnh .Dựng 3 tam giác đều BCA1,CAB1,BC1 ra phía ngoài .CMR: các đoan thẳng AA1,BB1,CC1 bằng nhau và đồng...
Đọc tiếp

Bài 1:Cho tam giác ABC vuông tại A,có AC=3AB.Trên AC lấy D và E cho AD=DE=EC.Tính tổng các góc BCA,góc BAD,góc BEA
Bài 2:Cho tam giác ABC,có góc ABC=70 độ ,góc ACB=30 độ.Trên AB lấy M sao cho goc MCB =40 độ.Trên cạnh AC lấy N sao cho góc NBC=50 độ.Tính góc MNC
Bài 3:Lấy 3 cạnh BC,CA,BA của tam giác ABC làm canh AC làm cạnh .Dựng 3 tam giác đều BCA1,CAB1,BC1 ra phía ngoài .CMR: các đoan thẳng AA1,BB1,CC1 bằng nhau và đồng quy
Bài 4:Cho tam giác ABC,đường cao AH.Trên nửa mp bờ AB không chứa C lấy D sao cho BD=BA,BD vuông góc BA.Trên nửa mp bờ AC không chứa B lấy E sao cho CE=CA,CE vuông góc CA.CMR:các đường thẳng AH,BE,CD đồng quy
Bài 5:Cho tam giác ABC vuông tại A.cạnh huyền BC=2AB,D trên AC ,E trên AB sao cho góc ABD = 1/3 góc ABC, góc ACE=1/3 góc ACD.Gọi F là giao điểm của BD và CE .Gọi I và K là hình chiếu của F trên BC và AC.Lấy H và G sao cho AC là trung trực của FH,BC là trung trực FG.CM:a,H,B,G thẳng hàng
b,tam giác DEF cân
Bài 6:Cho tam giác ABC nhọn, xác định D trên BC,E trên AC,F trên AB sao cho chu vi tam giác DEF nhỏ nhất

2
2 tháng 9 2017

Kẻ DM ∟ AC sao cho DM = AB. 
Dễ dàng chứng minh Δ DMC = Δ AEB (c - g - c) 
=> ^DCM = ^AEB và BE = MC (1) 
Δ BMD = Δ BED (c - g - c) 
=> ^BMD = ^BED và BM = BE (2) 
(1) và (2) cho: 
^DCM = ^BMD và CM = MB 
=> Δ BMC cân tại M 
mà ^DMC + ^DCM = 90o (Δ MDC vuông) 
=> ^DMC + ^BMD = 90o 
=> Δ BMC vuông cân. 
=> BCM = 45o 
Mà ^ACB + ^DCM = ^BCM 
=> ^ACB + ^AEB = 45o (vì ^AEB = ^DCM (cmt)) 
Cách 2: 
Đặt AB = a 
ta có: BD = a√2 
Do DE/DB = DB/DC = 1/√2 
=> Δ DBC đồng dạng Δ DEB (c - g - c) 
=> ^DBC = ^DEB 
Δ BDC có ^ADB góc ngoài 
=> ^ADB = ^DCB + ^DBC 
hay ^ACB + ^AEB = 45o 
Cách 3 
ta có: 
tanAEB = AB/AE = 1/2 
tanACB = AB/AC = 1/3 
tan (AEB + ACB) = (tanAEB + tanACB)/(1 - tanAEB.tanACB) 
= (1/2 + 1/3)/(1 - 1/2.1/3) = 1 = tan45o 
Vậy ^ACB + ^AEB = 45o

2 tháng 9 2017

Kẻ DM ∟ AC sao cho DM = AB. 

Dễ dàng chứng minh Δ DMC = Δ AEB (c - g - c) 

=> ^DCM = ^AEB và BE = MC (1) 

Δ BMD = Δ BED (c - g - c) 

=> ^BMD = ^BED và BM = BE (2) 

(1) và (2) cho: 

^DCM = ^BMD và CM = MB 

=> Δ BMC cân tại M 

mà ^DMC + ^DCM = 90o (Δ MDC vuông) 

=> ^DMC + ^BMD = 90o 

=> Δ BMC vuông cân. 

=> BCM = 45o 

Mà ^ACB + ^DCM = ^BCM 

=> ^ACB + ^AEB = 45o (vì ^AEB = ^DCM (cmt)) 

2 tháng 5 2016

ve tam giac da cho xong doi tinh

18 tháng 1 2017

A C B D F I G H K L 1 2 3 4 1 2 E 1 2 1

Lấy điểm L sao cho A là trung điểm LB thì 2 tam giác vuông\(\Delta CAL=\Delta CAB\left(2cgv\right)\)

=> CL = CB mà BC = 2AB ; LB = 2AB nên BC = LB => CL = LB = CB =>\(\Delta CLB\) đều\(\Rightarrow\widehat{ABC}=60^0\)

\(\Delta ABC\)vuông tại A có\(\widehat{ACB}=90^0-\widehat{ABC}=30^0\Rightarrow\widehat{C_2}=\frac{30^0}{3}=10^0\Rightarrow\widehat{C_3}=20^0\)

Ta chứng minh được 2 cặp tam giác vuông\(\Delta CKH=\Delta CKF\left(2cgv\right);\Delta CIF=\Delta CIG\left(2cgv\right)\)

=> CH = CG (1)(vì CH = CF ; CF = CG) ;\(\widehat{C_1}=\widehat{C_2};\widehat{C_3}=\widehat{C_4}\)

\(\Rightarrow\widehat{HCG}=\widehat{C_1}+\widehat{C_2}+\widehat{C_3}+\widehat{C_4}=2\left(\widehat{C_2}+\widehat{C_3}\right)=2\widehat{ACB}=60^0\)(2)

Từ (1) và (2),ta có\(\Delta HCG\)đều nên\(\widehat{G_1}=60^0\)

\(\Delta FCG\)cân tại C (CF = CG) có\(\widehat{FCG}=\widehat{C_3}+\widehat{C_4}=2\widehat{C_3}=40^0\Rightarrow\widehat{FGC}=\frac{180^0-40^0}{2}=70^0\)

\(\Rightarrow\widehat{G_2}=\widehat{CGF}-\widehat{G_1}=70^0-60^0=10^0\)

\(\widehat{B_1}=\frac{\widehat{ABC}}{3}=20^0\Rightarrow\widehat{B_2}=\widehat{ABC}-\widehat{B_1}=40^0\)

\(\widehat{DFG}=\widehat{I_1}+\widehat{B_2}=90^0+40^0=130^0\)(\(\widehat{DFG}\)là góc ngoài\(\Delta FIB\)).\(\Delta DFG\)có :

\(\widehat{FDG}=180^0-\widehat{DFG}-\widehat{G_2}=180^0-130^0-10^0=40^0\)

\(\Delta ADB\)vuông tại A có\(\widehat{ADB}=90^0-\widehat{B_1}=70^0\).

Ta chứng minh được 2 tam giác vuông\(\Delta DKH=\Delta DKF\left(2cgv\right)\)nên\(\widehat{HDK}=\widehat{ADB}\)

\(\Rightarrow\widehat{HDG}=\widehat{HDK}+\widehat{ADB}+\widehat{FDG}=70^0+70^0+40^0=180^0\)

Vậy H,D,G thẳng hàng

18 tháng 1 2017

Tịnh giải quá hay