Cho số thực x thay đổi thỏa mãn \(x\ge2\). Tính GTNN của biểu thức
\(P=x^2-3x+\frac{1}{2x}+2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(P=x^2-3x+\frac{1}{2x}+2=\left(x-2\right)^2+\left(\frac{x}{8}+\frac{1}{2x}\right)+\frac{7x}{8}-2\ge\frac{1}{4}\)
Đẳng thức xảy ra khi x = 2
Ta có:
\(M=\frac{2x+y}{xy}+\frac{3}{2x+y}=\frac{2x+y}{2}+\frac{3}{2x+y}\)
\(=\left(\frac{3}{8}.\frac{2x+y}{2}+\frac{3}{2x+y}\right)+\frac{5}{8}.\frac{2x+y}{2}\)
Có: \(\frac{3}{8}.\frac{2x+y}{2}+\frac{3}{2x+y}\ge2\sqrt{\frac{3}{8}.\frac{2x+y}{2}.\frac{3}{2x+y}}=\frac{3}{2}\)
Dấu '=' xảy ra <=> \(\frac{3}{8}.\frac{2x+y}{2}=\frac{3}{2x+y}\)
Có: \(\frac{5}{8}.\frac{2x+y}{2}\ge\frac{5}{8}\sqrt{2xy}=\frac{5}{4}\)
Dấu '=' xảy ra <=> 2x=y và xy=2
Do đó \(M\ge\frac{3}{2}+\frac{5}{4}=\frac{11}{4}\)
Dấu '=' xảy ra <=> x=1 và y=2
Vậy GTNN của M là 11/4 khi x=1 và y=2
\(T=x^2+y^2+\frac{1}{x}+\frac{1}{x+y}\)
\(=\left(x-2\right)^2+\left(y-1\right)^2+\left(\frac{x}{4}+\frac{1}{x}\right)+\left(\frac{x+y}{9}+\frac{1}{x+y}\right)+\frac{17}{9}\left(x+y\right)+\frac{7x}{9}-5\)
\(\ge0+0+2\sqrt{\frac{x}{4}\cdot\frac{1}{x}}+2\sqrt{\frac{x+y}{9}\cdot\frac{1}{x+y}}+\frac{17\cdot3}{9}+\frac{7\cdot2}{9}-5\)
\(=\frac{35}{9}\)
Đẳng thức xảy ra tại x=2;y=1
Đặt x = 2t
đưa bài toán về dạng:
\(T=4t^2+y^2+\frac{1}{2t}+\frac{1}{2t+y}\ge\left(t^2+t^2+y^2\right)+\frac{1}{2t+y}+\left(2t^2+\frac{1}{2t}\right)\)
\(\ge\frac{\left(2t+y\right)^2}{3}+\frac{1}{2t+y}+\left(2t^2+\frac{1}{2t}\right)\)
\(=\left(\frac{\left(2t+y\right)^2}{3}+\frac{9}{2t+y}+\frac{9}{2t+y}\right)+\left(2t^2+\frac{4}{2t}+\frac{4}{2t}\right)-\frac{17}{2t+y}-\frac{7}{2t}\)
\(\ge3.3+3.2-\frac{17}{3}-\frac{7}{2}=\frac{35}{6}\)
Dấu "=" xảy ra <=> y = t = 1 <=> y = 1 ; x = 2
\(M=\dfrac{2x+y}{xy}+\dfrac{3}{2x+y}=\dfrac{2x+y}{2}+\dfrac{3}{2x+y}=\dfrac{3\left(2x+y\right)}{16}+\dfrac{3}{2x+y}+\dfrac{5}{16}\left(2x+y\right)\ge2\sqrt{\dfrac{3}{16}.3}+\dfrac{5}{16}.2\sqrt{2xy}=\dfrac{3}{2}+\dfrac{5}{4}=\dfrac{11}{4}\).
Đẳng thức xảy ra khi x = 1; y = 2.
\(M=\dfrac{2x+y}{xy}+\dfrac{3}{2x+y}=\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\)
\(M=\dfrac{3\left(2x+y\right)}{16}+\dfrac{3}{2x+y}+\dfrac{5\left(2x+y\right)}{16}\ge2\sqrt{\dfrac{9\left(2x+y\right)}{16\left(2x+y\right)}}+\dfrac{5}{16}.2\sqrt{2xy}=\dfrac{11}{4}\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;2\right)\)
Ta có:
\(M=\dfrac{2x+y}{xx}+\dfrac{3}{2x+y}=\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\)
\(=\left(\dfrac{3}{8}\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\right)+\dfrac{5}{8}\dfrac{2x+y}{2}\)
Có: \(\dfrac{3}{8}\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\ge2\sqrt{\dfrac{3}{8}\dfrac{2x+y}{2}\dfrac{3}{2x+y}}=\dfrac{3}{2}\)
Dấu '=' xảy ra \(\Leftrightarrow\dfrac{3}{8}\dfrac{2x+y}{2}=\dfrac{3}{2x+y}\)
Có: \(\dfrac{5}{8}\dfrac{2x+y}{2}\ge\dfrac{5}{8}\sqrt{2xy}=\dfrac{5}{4}\)
Dấu '=' xảy ra \(\Leftrightarrow2x=y,xy=2\)
\(\Rightarrow M\ge\dfrac{3}{2}+\dfrac{5}{4}=\dfrac{11}{4}\)
Dấu '=' xảy ra \(\Leftrightarrow x=1,y=2\)
Vậy GTNN của M là \(\dfrac{11}{4}\Leftrightarrow x=1,y=2\)
Dự đoán dấu "=" khi x = 2 ; y= 1
Áp dụng bđt Cô-si cho 3 số và bđt \(\frac{a^2}{m}+\frac{b^2}{n}\ge\frac{\left(a+b\right)^2}{m+n}\) ta được
\(P=2x^2+y^2+\frac{28}{x}+\frac{1}{y}\)
\(=\left(\frac{7x^2}{4}+\frac{14}{x}+\frac{14}{x}\right)+\left(\frac{y^2}{2}+\frac{1}{2y}+\frac{1}{2y}\right)+\left(\frac{x^2}{4}+\frac{y^2}{2}\right)\)
\(\ge3\sqrt[3]{\frac{7x^2.14.14}{4.x^2}}+3\sqrt[3]{\frac{y^2.1.1}{2.2y.2y}}+\frac{\left(x+y\right)^2}{4+2}\)
\(=3.\sqrt[3]{\frac{7.14.14}{4}}+\frac{3}{\sqrt[3]{2^3}}+\frac{3^2}{6}=24\)
Dấu "=" khi x = 2 ; y = 1
Bài toán easy!
\(P=\left(2x^2+8\right)+\left(y^2+1\right)+\frac{28}{x}+\frac{1}{y}-9\)
Áp dụng BĐT AM-GM,ta có:
\(P\ge8x+2y+\frac{28}{x}+\frac{1}{y}-9\)
\(=\left(7x+\frac{28}{x}\right)+\left(y+\frac{1}{y}\right)+\left(x+y\right)-9\)
\(\ge2\sqrt{7x.\frac{28}{x}}+2\sqrt{y.\frac{1}{y}}+\left(x+y\right)-9\)
\(\ge28+2+3-9=24\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}2x^2=8\\y^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
Vậy \(P_{min}=24\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
\(P=x^2-3x+\dfrac{1}{2x}+\dfrac{7}{4}+\dfrac{1}{4}\)
\(P=\dfrac{4x^3-12x^2+7x+2}{4x}+\dfrac{1}{4}=\dfrac{\left(x-2\right)\left(4x^2-4x-1\right)}{4x}+\dfrac{1}{4}\)
\(P=\dfrac{\left(x-2\right)\left[4x\left(x-2\right)+\dfrac{1}{2}\left(x-2\right)+\dfrac{7x}{2}\right]}{4x}+\dfrac{1}{4}\ge\dfrac{1}{4}\)
\(P_{min}=\dfrac{1}{4}\) khi \(x=2\)
\(P=x^2-3x+\dfrac{1}{2x}+2\)
\(P=x^2-4x+4+x+\dfrac{4}{x}-\dfrac{7}{2x}-2\)
\(P=\left(x-2\right)^2+x+\dfrac{4}{x}-\dfrac{7}{2x}-2\)
Áp dụng bđt cosi và bđt x \(\ge\)2
Ta có: P \(\ge0+2\sqrt{x\cdot\dfrac{4}{x}}-\dfrac{7}{2.2}-2=\dfrac{1}{4}\)
Dấu "=" xảy ra <=> x = 2
Vậy MinP = 1/4 <=> x = 2