Cho tam giác ABC cân tại A. Trên BC lấy D,E sao cho BD=EC. Kẻ tia Dx vuông góc với AB, kẻ tia Ey vuông góc với AC, Dx cắt Ey tại H.
a) CMR: tam giác ABE= tam giác ACD b) CMR: HD=HE
Ai nhanh mình tickk
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác BxD và tam giác CyE có:
BD=EC(gt)
Góc BxD= Góc CyE=90 độ(Dx vg góc AB;Ey vg góc AC)
Góc xBD=Góc yCE(t/g ABC c/tại A)
=>tam giác BxD=tam giác CyE(g-c-g)
=>Dx=Ey(2 cạnh tg ứng)
=>Bx=Cy(2 cạnh tg ứng)
Có:Bx+xA=AB =>xA=AB-Bx
Cy+yA=AC =>yA=AC-Cy
Mà Bx=Cy(cmt)
AB=AC(t/g ABC c/tại A)
=>xA=yA
Xét t/g AxD và t/g AyE có:
xA=yA(cmt)
Dx=Ey(cmt)
Góc AxD=Góc AyE=90 độ(Dx vg góc AB;Ey vg góc AC)=>T/g AxD=T/G AyE(c-g-c)
=>AD=AE(2 cạnh tg ứng)
Xét t/g ABE và t/g ACD có:
AD=AE(cnt)
AB=AC(t/g ABC c/tại A)
Góc ABE=Góc ACD(t/g ABC c/tại A)
=>T/g ABE=t/g ACD(c-g-c)
b)Có: góc xDB=Góc EDH(2 góc đối đỉnh)
góc yEC=Góc DEH(2 góc đối đỉnh)
Mà góc xBD=Góc yEC(T/g BxD=t/g CyE)
=>Góc EDH=Góc DEH
Xét t/g HDE có:
Góc EDH=Góc DEH(cmt)
=>HDE là t/g c/tại H
=>HD=HE
Bạn tự vẽ hình nha!!!
a.
ABC = MBD (2 góc đối đỉnh)
ACB = NCE (2 góc đối đỉnh)
mà ABC = ACB (tam giác ABC cân tại A)
=> MBD = NCE
Xét tam giác MBD vuông tại M và tam giác NCE vuông tại N có:
MBD = NCE (chứng minh trên)
BD = CE (gt)
=> Tam giác MBD = Tam giác NCE (cạnh huyền - góc nhọn)
=> DM = EN (2 cạnh tương ứng)
b.
AD = AB + BD
AE = AC + CE
mà AB = AC (tam giác ABC cân tại A)
BD = CE (gt)
=> AD = AE
Xét tam giác ADM và tam giác AEN có:
DM = EN (theo câu a)
MDA = NEA (tam giác MBD = tam giác NCE)
AD = AE (chứng minh trên)
=> Tam giác ADM = Tam giác AEN (c.g.c)
a.
ABC = MBD (2 góc đối đỉnh)
ACB = NCE (2 góc đối đỉnh)
mà ABC = ACB (tam giác ABC cân tại A)
=> MBD = NCE
Xét tam giác MBD vuông tại M và tam giác NCE vuông tại N có:
MBD = NCE (chứng minh trên)
BD = CE (gt)
=> Tam giác MBD = Tam giác NCE (cạnh huyền - góc nhọn)
=> DM = EN (2 cạnh tương ứng)
b.
AD = AB + BD
AE = AC + CE
mà AB = AC (tam giác ABC cân tại A)
BD = CE (gt)
=> AD = AE
Xét tam giác ADM và tam giác AEN có:
DM = EN (theo câu a)
MDA = NEA (tam giác MBD = tam giác NCE)
AD = AE (chứng minh trên)
=> Tam giác ADM = Tam giác AEN (c.g.c)
a) Xét ΔHBA vuông tại A và ΔHBD vuông tại D có
BH chung
BA=BD(gt)
Do đó: ΔHBA=ΔHBD(cạnh huyền-cạnh góc vuông)