Tìm STN a nhỏ nhất sao cho a chia cho 5,cho 7,cho 9 được số dư theo thứ tự 3,4,5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Số đó là 3x+1=4y+3=5z+1 => 4y+2=3x=5z => 4y+2 chia hết cho 15. Số chia hết cho 15 có số tận cùng là 0 hoặc 5 nên 4y có số tận cùng là 3 hoặc 8. Số 4y chia hết cho 4 nên phải là số chẵn, do đó nó có tận cùng là 8.
Lần lượt thử các số chia hết cho 4: 8 + 2 = 10 không chia hết cho 15; 28+2=30 chia hết.
Vì vậy số đó là 31.
2,Gọi số cần tìm là a
Giả sử a chia cho 5 được b dư 3 ta có
a = 5b + 3
2a = 10b + 6 = 10b + 5 + 1
2a – 1 = 10b + 5 hay nói cách khác 2a – 1 chia hết cho 5(1)
giả sử a chia cho 7 được c dư 4 ta có
a = 7c + 4
2a = 14c + 8 = 14c + 7 + 1
2a – 1 = 14c + 7 hay nói cách khác 2a – 1 chia hết cho 7(2)
giả sử a chia cho 9 được d dư 5 ta có
a = 9a + 5
2a = 18d + 10 = 18d + 9 + 1
2a – 1 = 18d + 9 hay 2a – 1 chia hết cho 9(3)
từ 1, 2 và 3 ta có 2a - 1 chia cho 5, 7, 9 vì yêu cầu tìm số tự nhiên nhỏ nhất nên 2a – 1 là bội số chung nhỏ nhất của (5,7,9) = 5.7.9 = 315
suy ra 2a – 1 = 315
2a = 316
a = 158
vậy số cần tìm là 158
1, Số đó là 3x+1=4y+3=5z+1 => 4y+2=3x=5z => 4y+2 chia hết cho 15. Số chia hết cho 15 có số tận cùng là 0 hoặc 5 nên 4y có số tận cùng là 3 hoặc 8. Số 4y chia hết cho 4 nên phải là số chẵn, do đó nó có tận cùng là 8.
Lần lượt thử các số chia hết cho 4: 8 + 2 = 10 không chia hết cho 15; 28+2=30 chia hết.
Vì vậy số đó là 31.
2,Gọi số cần tìm là a
Giả sử a chia cho 5 được b dư 3 ta có
a = 5b + 3
2a = 10b + 6 = 10b + 5 + 1
2a – 1 = 10b + 5 hay nói cách khác 2a – 1 chia hết cho 5(1)
giả sử a chia cho 7 được c dư 4 ta có
a = 7c + 4
2a = 14c + 8 = 14c + 7 + 1
2a – 1 = 14c + 7 hay nói cách khác 2a – 1 chia hết cho 7(2)
giả sử a chia cho 9 được d dư 5 ta có
a = 9a + 5
2a = 18d + 10 = 18d + 9 + 1
2a – 1 = 18d + 9 hay 2a – 1 chia hết cho 9(3)
từ 1, 2 và 3 ta có 2a - 1 chia cho 5, 7, 9 vì yêu cầu tìm số tự nhiên nhỏ nhất nên 2a – 1 là bội số chung nhỏ nhất của (5,7,9) = 5.7.9 = 315
suy ra 2a – 1 = 315
2a = 316
a = 158
vậy số cần tìm là 158
Bài 1 :
Gọi số tự nhiên nhỏ nhất là n
Ta có : Số 2n chia cho 3,4,5 đều dư 2.
=> 2n - 2 Chia hết cho 3,4,5
=> 2n - 2 thuộc BC(3,4,5 )
Mà n nhỏ nhất => 2n - 2 = BCNN( 3,4,5 )
Mà 4 = 22
=> BCNN( 3,4,5 ) = 22.3.5 = 60
=> 2n - 2 = 60
=> 2n = 60 + 2 = 62
=> n = 62 : 2 = 31
Vậy n = 31 là giá trị cần tìm
số chia cho 9 dư 5 có dạng 9a+5
ta có 9a+5 chia 7 dư 2a+5
theo đề bài ta lại có 2a+5 chia 7 dư 4 nên có dạng 2a+5=7b+4 =>a=(7b-1)/2
số cần tìm luc này có dạng 63b/2+1/2 chia 5 du 3b/2+1/2
như vậy ta cần tìm số b nhỏ nhất sao cho 3b/2+1/2 chia 5 dư 3 hay số 3b/2-5/2 chia hết cho 5
=>3b/10-1/2 là số nguyên
=>3b-5 chia hết cho 10
=>b=5
=>số cần tìm là 63*5/2+1/2=158
a/ GỌi số đó là A. A:5 dư 3 => A-3 chia hết cho 5 => A-3+5 chia hết cho 5 =>A+2 chia hết cho 5. A: 7 dư 4 => A-4 chia hết cho 7=> A-4+7 chia hết cho 7=> A+3 chia hết cho 7. A:9 dư 5 => A-5 chia hết cho 9 => A-5+9 chia hết cho 9 =>A+4 chia hết cho9 Có 63 chia hết cho 7 và 9 => 63*(A+2) chia hết cho 7,9 Mà A+2 chia hết cho 5 => 63*(A+2) chia hết cho 5,7,9 Có bội chung nhỏ nhất 5,7,9 là 315 => 63*(A+2) =315 =>A=3. Mình sắp học thêm, nhưng nhất định sẽ gửi con B cho bạn. Thân^^
Có y là số tự nhiên => x+4 phải chia hết x+1 Có x+1 chia hết cho x+1 => x+4-(x+1) chia hết cho x+1 => 3 chia hết cho x+1 => x+1 thuộc ước của 3 : 1;-1;3;-3 => x thuộc 2;0;-4;-2. =>y thuộc 2;4;0;-2.
a) Tìm số tự nhiên nhỏ nhất sao cho khi chia số đó cho 3,4,5 đều dư 1và chia cho 7 thì không dư
Gọi số đó là x
Ta có: x - 1 ∈ BC(3; 4; 5) = {0; 60; 120; 180; 240; 300; ...}
=> x ∈ {1; 61; 121; 181; 241; 301 ...}
Vì x chia hết cho 7 => x = 301
b) Tìm số tự nhiên a nhỏ nhất sao cho a chia cho 2 dư 1,chia cho 5 dư 1,chia cho 7 dư 3,chia hết cho 9
Ta có: a chia 2 dư 1
a chia 5 dư 1
a chia 7 dư 3
a chia hết cho 9
=> a chia hết cho 3; 6; 9; 10
Ta có: 2 + 1 = 3
6 + 1 = 6
7 + 3 = 10
=> a nhỏ nhất
=> a thuộc BCNN(3; 6; 9; 10)
Ta có: 3 = 3
6 = 2 . 3
9 = 3^2
10 = 2 . 5
=> BCNN(3; 6; 9; 10) = 3^2 . 2 . 5 = 90
=> a = 90
Gọi số cần tìm là a
Giả sử a chia cho 5 được b dư 3, ta có:
a = 5b + 3
2a = 10b + 6 = 10b + 5 + 1
2a – 1 = 10b + 5 hay nói cách khác 2a – 1 chia hết cho 5 (1)
Giả sử a chia cho 7 được c dư 4, ta có :
a = 7c + 4
2a = 14c + 8 = 14c + 7 + 1
2a – 1 = 14c + 7 hay nói cách khác 2a – 1 chia hết cho 7 (2)
Giả sử a chia cho 9 được d dư 5, ta có:
a = 9a + 5
2a = 18d + 10 = 18d + 9 + 1
2a – 1 = 18d + 9 hay 2a – 1 chia hết cho 9 (3)
Từ (1), (2) và (3) ta có:
2a - 1 chia cho 5, 7, 9 vì yêu cầu tìm số tự nhiên nhỏ nhất nên 2a – 1 là bội số chung nhỏ nhất của (5,7,9) = 5.7.9 = 315
=> 2a – 1 = 315
2a = 316
a = 158
vậy số cần tìm là 158
Mình trình bày lại bước cuối vì nó sát nhau quá
2a - 1 chia cho 5, 7, 9
=> BCNN(5,7,9) = 5.7.9 = 315
=> 2a – 1 = 315
2a = 316
a = 158
vậy số cần tìm là 158