K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2021

Ơ cái avt ..... :))

10 tháng 12 2021

Tham khảo:

Giải phương trình \(x^4-4x^3+6x^2-4x-15=0\) - Hoc24

NV
22 tháng 7 2021

a.

\(\Leftrightarrow4x^2-6x+1+\dfrac{1}{\sqrt{3}}\sqrt{\left(4x^2-2x+1\right)\left(4x^2+2x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{4x^2-2x+1}=a>0\\\sqrt{4x^2+2x+1}=b>0\end{matrix}\right.\) ta được:

\(2a^2-b^2+\dfrac{1}{\sqrt{3}}ab=0\)

\(\Leftrightarrow\left(a-\dfrac{b}{\sqrt{3}}\right)\left(2a+\sqrt{3}b\right)=0\)

\(\Leftrightarrow a=\dfrac{b}{\sqrt{3}}\)

\(\Leftrightarrow3a^2=b^2\)

\(\Leftrightarrow3\left(4x^2-2x+1\right)=4x^2+2x+1\)

\(\Leftrightarrow...\)

NV
22 tháng 7 2021

b.

\(x^2-3x+1+\dfrac{1}{\sqrt{3}}\sqrt{\left(x^2-x+1\right)\left(x^2+x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x^2+x+1}=b>0\end{matrix}\right.\)

\(\Rightarrow2a^2-b^2+\dfrac{1}{\sqrt{3}}ab=0\)

Lặp lại cách làm câu a

a) Để biểu thức vô nghĩa thì \(\dfrac{3x-2}{5}-\dfrac{x-4}{3}=0\)

\(\Leftrightarrow\dfrac{3x-2}{5}=\dfrac{x-4}{3}\)

\(\Leftrightarrow3\left(3x-2\right)=5\left(x-4\right)\)

\(\Leftrightarrow9x-6=5x-20\)

\(\Leftrightarrow9x-5x=-20+6\)

\(\Leftrightarrow4x=-14\)

\(\Leftrightarrow x=-\dfrac{7}{2}\)

20 tháng 3 2020

Ta có : \(x^4-4x^3+6x^2-4x-15=0\)

=> \(x^4-3x^3-x^3+3x^2+3x^2-9x+5x-15=0\)

=> \(x^3\left(x-3\right)-x^2\left(x-3\right)+3x\left(x-3\right)+5\left(x-3\right)=0\)

=> \(\left(x-3\right)\left(x^3-x^2+3x+5\right)=0\)

=> \(\left(x-3\right)\left(x^3+x^2-2x^2-2x+5x+5\right)=0\)

=> \(\left(x-3\right)\left(x^2\left(x+1\right)-2x\left(x+1\right)+5\left(x+1\right)\right)=0\)

=> \(\left(x-3\right)\left(x+1\right)\left(x^2-2x+5\right)=0\)

=> \(\left(x-3\right)\left(x+1\right)\left(x^2-2x+1+4\right)=0\)

=> \(\left(x-3\right)\left(x+1\right)\left(\left(x-1\right)^2+4\right)=0\)

\(\left(x-1\right)^2+4>0\)

=> \(\left(x-3\right)\left(x+1\right)=0\)

=> \(\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là \(S=\left\{3;-1\right\}\)

20 tháng 3 2020

Phương trình tương đương:

\(\begin{array}{l} {x^4} - 4{x^3} + 6{x^2} - 4x + 1 = 16\\ \Leftrightarrow {\left( {x - 1} \right)^4} = 16\\ \Leftrightarrow {\left[ {{{\left( {x - 1} \right)}^2}} \right]^2} - \left( {{2^2}} \right) = 0\\ \Leftrightarrow \left[ {{{\left( {x - 1} \right)}^2} - {2^2}} \right]\left[ {{{\left( {x - 1} \right)}^2} + {2^2}} \right] = 0\\ \Leftrightarrow \left[ \begin{array}{l} {\left( {x - 1} \right)^2} = 4 \Leftrightarrow \left[ \begin{array}{l} x - 1 = 2\\ x - 1 = - 2 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 3\\ x = - 1 \end{array} \right.\\ {\left( {x - 1} \right)^2} = - 4 (VN) \end{array} \right. \end{array}\)

6 tháng 8 2015

a)x5+x-1=0

<=>(x5+x4+x3+x2+x)-(x4+x3+x2+x+1)=0

<=>(x4+x3+x2+x+1)(x-1)=0

Do x4+x3+x2+x+1>0

=>x+1=0

<=>x=1

31 tháng 7 2015

a) <=> 4x^3 - 12x^2 - x^2 + 3x + 6x - 18 = 0

<=> 4x^2 (x - 3) - x(x - 3) + 6(x - 3) = 0

<=> (x - 3)(4x^2 - x + 6) = 0

xét 2 th

. x - 3 = 0 <=> x = 3

. 4x^2 - x + 6 = 0

<=> 4x^2 + 2.(1/2)x + 1/4 + 23/4 = 0

<=> (4x + 1/2)^2 = -23/4

.... phần sau bạn tự làm nhé 

vậy pt trên có nghiệm là ...

. mik bận nên chỉ làm như vậy thôi.. những ý sau thì tách tương tự

31 tháng 7 2015

c) => x3 + 2x2 - 6x - 12x + 4x + 8 = 0

=> (x3 + 2x2)  -  (6x + 12x)  + (4x + 8) = 0

=> x2. (x +2) - 6x. (x + 2) + 4.(x + 2) =0

=> (x +2).(x2  - 6x + 4) = 0

=> x+ 2 = 0 hoặc x - 6x + 4 = 0

+) x+ 2 =0 => x = -2

+) x - 6x + 4 = 0 => x - 2.x.3  + 9  - 5 = 0 => (x -3)2  = 5

=> x - 3 = \(\sqrt{5}\) hoặc x - 3 = - \(\sqrt{5}\)

=> x = 3 + \(\sqrt{5}\) hoặc x = 3 - \(\sqrt{5}\)

vậy...

 

c: =>(x+2)(x+3)(x-5)(x-6)=180

=>(x^2-3x-10)(x^2-3x-18)=180

=>(x^2-3x)^2-28(x^2-3x)=0

=>x(x-3)(x-7)(x+4)=0

=>\(x\in\left\{0;3;7;-4\right\}\)

c: =>(x-3)(x+2)(2x+1)(3x-1)=0

=>\(x\in\left\{3;-2;-\dfrac{1}{2};\dfrac{1}{3}\right\}\)

NV
25 tháng 4 2019

\(x^4+4x^3+4x^2-14x^2-28x-15=0\)

\(\Leftrightarrow\left(x^2+2x\right)^2-14\left(x^2+2x\right)-15=0\)

Đặt \(x^2+2x=a\Rightarrow a^2-14a-15=0\Rightarrow\left[{}\begin{matrix}a=-1\\a=15\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2+2x=-1\\x^2+2x=15\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+2x+1=0\\x^2+2x-15=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-5\\x=3\end{matrix}\right.\)

NV
22 tháng 11 2019

a/ Chắc là bạn ghi nhầm đề? Số cuối là số 9 mới đúng, chứ 27 thì câu này vô nghiệm

\(x^4+4x^3+4x^2+8x^2+12x+27=0\)

\(\Leftrightarrow x^2\left(x+2\right)^2+8\left(x+\frac{3}{4}\right)^2+\frac{45}{2}=0\)

Vế phải dương nên pt vô nghiệm

b/ Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\) ta được:

\(x^2+\frac{1}{x^2}-5\left(x-\frac{1}{x}\right)+6=0\)

Đặt \(x-\frac{1}{x}=a\Rightarrow x^2+\frac{1}{x^2}=a^2+2\)

\(\Rightarrow a^2+2-5a+6=0\)

\(\Leftrightarrow a^2-5a+8=0\Rightarrow\) pt vô nghiệm

Lại nhầm đề nữa???? Dấu thứ 2 là dấu + thì pt này có nghiệm đẹp

23 tháng 11 2019

v để mình xem lại .. ==