cho phân số a/b(a,b thuộc N , b khác 0).
giả sử a/b < 1 và m thuộc N, m khác 0.Chứng tỏ rằng:
a/b < a+m/b+m
b
áp dụng kết quả ở câu a để so sánh 434/561 và 441/568
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
So sánh: \(\dfrac{434}{561}\) và \(\dfrac{441}{568}\)
* Bài làm:
Vì \(\dfrac{434}{561}\) < 1 => \(\dfrac{434}{561}\) < \(\dfrac{434+7}{561+7}\) hay \(\dfrac{434}{561}\) < \(\dfrac{441}{568}\)
a) \(\dfrac{a}{b}\)=\(\dfrac{a\left(b+m\right)}{b\left(b+m\right)}\)=\(\dfrac{ab+am}{b^2+bm}\) ; (1)
\(\dfrac{a+m}{b+m}\)=\(\dfrac{b\left(a+m\right)}{b\left(b+m\right)}\)=\(\dfrac{ab+bm}{b^2+bm}\) ; (2)
\(\dfrac{a}{b}\) < \(1\) \(\Rightarrow\) \(a\) < \(b\), suy ra \(ab+am\) < \(ab+bm\). (3)
Từ (1), (2) và (3) ta có: \(\dfrac{a}{b}\) < \(\dfrac{a+m}{b+m}\)
b) Áp dụng, rõ ràng \(\dfrac{434}{561}\) < 1 nên \(\dfrac{434}{561}\) < \(\dfrac{434+7}{561+7}\)=\(\dfrac{441}{568}\)
Câu 1: Giải
\(\frac{a}{b}< 1\Leftrightarrow a< b\)
\(\Leftrightarrow am< bm\)
\(\Leftrightarrow ab+am< ab+bm\)
\(\Leftrightarrow a\left(b+m\right)< b\left(a+m\right)\)
\(\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\left(đpcm\right)\)
Câu 2: Giải
Ta có : \(\hept{\begin{cases}\frac{437}{564}=1-\frac{127}{564}\\\frac{446}{573}=1-\frac{127}{573}\end{cases}}\)
Vì \(\frac{127}{564}>\frac{127}{573}\) nên \(\frac{437}{564}>\frac{446}{573}\)
1) Với a, b ∈ Z, b> 0
- Khi a , b cùng dấu thì \(\frac{a}{b}\) > 0
- Khi a,b khác dấu thì \(\frac{a}{b}\)< 0
Tổng quát: Số hữu tỉ \(\frac{a}{b}\) ( a,b ∈ Z, b # 0) dương nếu a,b cùng dấu, âm nếu a, b khác dấu, bằng 0 nếu a = 0
Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y
ta có : x < y hay a/m < b/m => a < b.
So sánh x, y, z ta chuyển chúng cùng mẫu : 2m
x = a/m = 2a/ 2m và y = b/m = 2b/2m và z = (a + b) / 2m
mà : a < b
suy ra : a + a < b + a
hay 2a < a + b
suy ra x < z (1)
mà : a < b
suy ra : a + b < b + b
hay a + b < 2b
suy ra z < y (2)
:D