tìm các hệ số a và b của đa thức (x)=ax+b biết rằng f(1)=1 , f(2)=4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: f(1)=a.1+b=a+b
do f(1)=1 nên a+b=1 (1)
lại có: f(2)=a.2+b=2a+b
do f(2)=4 nên 2a+b=4 (2)
từ (1) (2) => a=3; b=-2
a) Ta có \(f\left(x\right)=ax+b\)
+) \(f\left(1\right)=1\)
=> \(f\left(1\right)=a\cdot1+b=1\)
=> \(f\left(1\right)=a+b=1\)(1)
+) \(f\left(2\right)=4\)
=> \(f\left(2\right)=a\cdot2+b=4\)
=> \(f\left(2\right)=2a+b=4\)(2)
Từ (1) và (2) => \(\orbr{\begin{cases}a+b=1\\2a+b=4\end{cases}}\)
=> \(a-2a=1-4\)
=> \(-a=-3\)
=> \(a=3\)
Thay a = 3 vào ta có : \(\orbr{\begin{cases}3+b=1\\2\cdot3+b=4\end{cases}}\)
=> \(\orbr{\begin{cases}3+b=1\\6+b=4\end{cases}}\)
=> b = -2
Vậy a = 3 và b = -2
b) Thay a = 3 và b = -2 vào đa thức \(f\left(x\right)=ax+b\)ta có :
\(f\left(x\right)=3\cdot x+\left(-2\right)=0\)
=> \(3x+\left(-2\right)=0\)
=> \(3x=0-\left(-2\right)\)
=> \(3x=0+2\)
=> \(3x=2\)
=> \(x=\frac{2}{3}\)
Vậy nghiệm của đa thức \(f\left(x\right)=\frac{2}{3}\).
a) Ta có f(7) = a7 + b và f(2) + f(3) = (a2+ b) + (a3 + b) = 5a + 2b. Vậy để f(7) = f(2) + f(3), ta cần giải phương trình:
a7 + b = 5a + 2b
Simplifying, ta được: 2a = b.
Vậy điều kiện của a và b để f(7) = f(2) + f(3) là b = 2a.
b) Để tìm nghiệm của P(x), ta cần giải phương trình (x-2)(2x+5) = 0:
(x-2)(2x+5)= 0
→ X-2 = 0 hoặc 2x+5 = 0
→ x = 2 hoặc x = -5/2
Vậy nghiệm của P(x) là x = 2 hoặc x =-5/2.
c) Ta biết rằng đa thức P(x) có 1 nghiệm là -2, vậy ta có thể viết P(x)
dưới dạng:
P(x) = (x+2)(x^3 - 2x^2 + ax - 2)
Từ đó suy ra:
P(-2) = (-2+2)(8 - 4a - 2) = 0
⇔-8a= 16
⇔a = -2
Vậy hệ số a của P(x) là -2.
1) \(\left(x^2-4x+3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)
Với \(x=1\): \(0=-1f\left(0\right)\Leftrightarrow f\left(0\right)=0\)do đó \(0\)là một nghiệm của đa thức \(f\left(x\right)\).
Tương tự xét \(x=2,x=3\)có thêm hai nghiệm nữa là \(3\)và \(2\).
2) \(f\left(2\right)=4a-2+b=0\Leftrightarrow4a+b=2\)
Tổng hệ số cao nhất và hệ số tự do là \(a+b\)suy ra \(a+b=-7\).
Ta có hệ:
\(\hept{\begin{cases}4a+b=2\\a+b=-7\end{cases}}\Leftrightarrow\hept{\begin{cases}3a=9\\b=-7-a\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3\\b=-10\end{cases}}\).
Ta có: f(0) = \(a.0^2+b.0+c=4\)
\(\Rightarrow0+0+c=4\Rightarrow c=4\)
\(f\left(1\right)=a.1^2+b.1+c=3\)
\(\Rightarrow a+b+c=3\Rightarrow a+b=-1\)
\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=7\)
\(\Rightarrow a-b+4=7\Rightarrow a-b=3\)
Ta có: \(\left(a+b\right)+\left(a-b\right)=a+a+b-b=2a=-1+3=2\)
\(\Rightarrow a=2:2=1\)
\(\Rightarrow b=-1-1=-2\)
Vậy a=1;b=-2;c=4
Ta có:\(\hept{\begin{cases}f\left(0\right)=4\\f\left(1\right)=3\\f\left(-1\right)=7\end{cases}}\) \(\hept{\begin{cases}c=4\\a+b=3\\a-b=7\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}c=4\\a=5\\b=-2\end{cases}}\)
ta có
\(\hept{\begin{cases}f\left(1\right)=1\\f\left(2\right)=4\end{cases}\Leftrightarrow\hept{\begin{cases}a+b=1\\2a+b=4\end{cases}}}\)
lấy hiệu hai phương trình ta có :
\(\left(2a+b\right)-\left(a+b\right)=4-1\Leftrightarrow a=3\Rightarrow b=-2\)