K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2021

Ta có \(a=1;b=-3;c=-7\)

Nhận thấy a và c trái dấu, do đó phương trình đã cho luôn có hai nghiệm phân biệt \(x_1;x_2\)

Theo định lý Vi-ét, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-\frac{-3}{1}=3\\x_1x_2=\frac{c}{a}=\frac{-7}{1}=-7\end{cases}}\)

Như vậy đặt  \(A=2x_1^3-3x_1^2x_2+2x_2^3-3x_1x_2\)\(=2\left(x_1^3+x_2^3\right)-3x_1x_2\left(x_1-1\right)\)

\(=2\left(x_1+x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)-3.\left(-7\right)\left(x_1-1\right)\)(vì \(x_1x_2=-7\left(cmt\right)\))

\(=2.3\left(x_1^2+2x_1x_2+x_2^2-3x_1x_2\right)+21\left(x_1-1\right)\)(vì \(x_1+x_2=3\left(cmt\right)\))

\(=6\left[\left(x_1+x_2\right)^2-3.\left(-7\right)\right]+21x_1-21\)

\(=6\left(3^2+21\right)+21x_1-1\)\(=6.30+21x_1-1\)\(=179+21x_1\)

Xét phương trình \(x^2-3x-7=0\)có hai nghiệm phân biệt \(x_1,x_2\), do đó có hai trường hợp của \(x_1\)

\(\orbr{\begin{cases}x_1=\frac{-b+\sqrt{b^2-4ac}}{2a}=\frac{-\left(-3\right)+\sqrt{\left(-3\right)^2-4.1.\left(-7\right)}}{2.1}=\frac{3+\sqrt{9+28}}{2}=\frac{3+\sqrt{37}}{2}\\x_2=\frac{-b-\sqrt{b^2-4ac}}{2a}=\frac{-\left(-3\right)-\sqrt{\left(-3\right)^2-4.1.\left(-7\right)}}{2.1}=\frac{3-\sqrt{9+28}}{2}=\frac{3-\sqrt{37}}{2}\end{cases}}\)

Trường hợp \(x_1=\frac{3+\sqrt{37}}{2}\)thì \(A=179+21x_1=179+21.\frac{3+\sqrt{37}}{2}=\frac{358+63+21\sqrt{37}}{2}=\frac{421+21\sqrt{37}}{2}\)

Trường hợp \(x_1=\frac{3-\sqrt{37}}{2}\)thì 

\(A=179+21x_1=179+21.\frac{3-\sqrt{37}}{2}=\frac{358+63-21\sqrt{37}}{2}=\frac{421-21\sqrt{37}}{2}\)

Vậy ...

27 tháng 11 2021

giúp mik với

26 tháng 9 2021

-1/7 . 7/3 ; -4 ; -43/10

=-7/3 ; -4 ; -43/10

nhớ tính lại từ đây nha=-7/3 ; -4/1 ; -43/10

= -7/3 . -1/4 ; -43 /10

= 8/12; -43/10

=8/12 . -10/43

= -80/516

26 tháng 7 2021

1 , 2 thừa số x

2, 3 thừa số x

26 tháng 7 2021

1 , 2 thừa số x

2, 3 thừa số x

5 tháng 1 2020

7 tháng 2 2019

Chọn C

Điều kiện

Ta  có: log5(x+1) + log5( x-3) = 1

Tương đương : log5[(x+1)( x-3)] = 1 hay ( x+1) (x-3) = 5

=> x2- 3x+ x- 3= 5 nên x2- 2x-8= 0

Do đó; x= -2 hoặc x= 4

 Mà x= -2 loại do đó đáp án đúng là C .