K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2021

• PT có nghiệm duy nhất \( \Leftrightarrow \dfrac{1}{m} \ne \dfrac{-2}{1} \Leftrightarrow m \ne \dfrac{-1}{2}\)

• PT vô nghiệm \(\Leftrightarrow \dfrac{1}{m} =\dfrac{-2}{1}  \ne \dfrac{1}{2} \Leftrightarrow m=\dfrac{-1}{2}\)

• PT có vô số nghiệm \(\Leftrightarrow \dfrac{1}{m} = \dfrac{-2}{1} = \dfrac{1}{2} (\text{Vô lý})\)

Vậy....

31 tháng 12 2018

\(\hept{\begin{cases}mx+y=1\left(1\right)\\3x-\left(m+1\right)y=-3\left(2\right)\end{cases}}\).

Từ phương trình (1) suy ra \(y=1-mx\)

Thay vào phương trình (2),ta có: \(3x-\left(m+1\right)\left(1-mx\right)=-3\)

\(\Leftrightarrow\left(m+1\right)\left(1-mx\right)=3x+3\)

\(\Leftrightarrow-m^3x-mx+m=3x+2\)

\(\Leftrightarrow-m\left(m^2x+x-1\right)-3x=2\)

Với m = 0 phương trình có nghiệm duy nhất: \(x=-\frac{2}{3}\)

Xét tiếp tục với \(m\ne0\) nhé bạn.

31 tháng 12 2018

Thôi chết giải nhầm.

                                     Giải

Từ phương trình thứ nhất của hệ suy ra \(y=1-mx\)

Thay vào phương trình thức hai của hệ được: \(3x-\left(m+1\right)\left(1-mx\right)=-3\)

\(\Leftrightarrow\left(m+1\right)\left(1-mx\right)=3x+3\)

\(\Leftrightarrow m\left(1-mx\right)+1\left(1-mx\right)=3x+3\)

\(\Leftrightarrow-m^2x-mx+m=3x+2\)

Với m = 0 thì \(PT\Leftrightarrow3x+2=0\Leftrightarrow x=-\frac{2}{3}\)

 Với \(m\ne0\) .....giải tiếp ....

^^

a

Để hệ có nghiệm duy nhất thì \(\dfrac{m-1}{m}< >\dfrac{m}{2}\)

=>m^2<>2m-2

=>m^2-2m+2<>0(luôn đúng)

Để hệ có vô sô nghiệm thì \(\dfrac{m}{2}=\dfrac{m-1}{m}=\dfrac{m+1}{2}\)

=>2m=2m+2 và 2m-2=m^2+m

=>m^2+m-2m+2=0 và 0m=2(loại)

Để hệ vô nghiệm thì \(\dfrac{m}{2}=\dfrac{m-1}{m}< >\dfrac{m+1}{2}\)

=>m^2=2m-2 và 2m<>2m+2

=>0m<>2 và m^2-2m+2=0(loại)

b: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{m+2}< >\dfrac{m-2}{m+1}\)

=>m^2+m<>m^2-4

=>m<>-4

Để hệ có vô số nghiệm thì \(\dfrac{m}{m+2}=\dfrac{m-2}{m+1}=\dfrac{5}{2}\)

=>m^2+m=m^2-4 và 2m=5m+10

=>m=-4 và m=-10/3(loại)

Để hệ vô nghiệm thì \(\dfrac{m}{m+2}=\dfrac{m-2}{m+1}< >\dfrac{5}{2}\)

=>m=-4 và m<>-10/3(nhận)

c: Để hệ có nghiệm duy nhất thì \(\dfrac{m-1}{m+2}< >-\dfrac{2}{1}=-2\)

=>-2m-4<>m-1

=>-3m<>3

=>m<>-1

Để hệ vô nghiệm thì \(\dfrac{m-1}{m+2}=\dfrac{2}{-1}< >\dfrac{3m-1}{1-m}\)

=>2m+4=-m+1 và 2-2m<>-3m+1

=>3m=-3 và m<>-1

=>m=-1 và m<>-1(loại)

Để hệ có vô số nghiệm thì \(\dfrac{m-1}{m+2}=\dfrac{2}{-1}< >\dfrac{3m-1}{1-m}\)

=>m=-1