1.tìm tập hợp các số nguyên n để:
a)\(\frac{-24}{n}\)+\(\frac{17}{n}\)là 1 số nguyên
b)\(\frac{n-8}{n+1}\)+\(\frac{n+3}{n+1}\)là 1 số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(A=\frac{-24}{n}+\frac{17}{n}=\frac{\left(-24\right)+17}{n}=\frac{-7}{n}\)
\(\Rightarrow n\inƯ\left(-7\right)=\left\{-7,-1,1,7\right\}\)
\(\Rightarrow n=-7;n=-1;n=1;n=7\) để A là số nguyên
\(B=\frac{n-8}{n+1}+\frac{n+3}{n+1}=\frac{n-8+n+3}{n+1}=\frac{2n-5}{n+1}=\frac{2n+2-6}{n+1}=2-\frac{7}{n+1}\)
\(\Rightarrow n+1\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
nếu \(n+1=-7\Rightarrow n=-8\)
\(n+1=-1\Rightarrow n=-2\)
\(n+1=1\Rightarrow n=0\)
\(n+1=7\Rightarrow n=6\)
vậy \(n\in\left\{-8;-2;0;6\right\}\)để B là số nguyên
Giải:
Ta có: \(\frac{4}{n-1}+\frac{6}{n-1}-\frac{3}{n-1}=\frac{7}{n-1}\)
Mà \(\frac{4}{n-1}+\frac{6}{n-1}-\frac{3}{n-1}=\frac{7}{n-1}\in Z\)
\(\Rightarrow7⋮n-1\)
\(\Rightarrow n-1\in\left\{1;-1;7;-7\right\}\)
+) \(n-1=1\Rightarrow n=2\)
+) \(n-1=-1\Rightarrow n=0\)
+) \(n-1=7\Rightarrow n=8\)
+) \(n-1=-7\Rightarrow n=-6\)
Vậy \(n\in\left\{2;0;8;-6\right\}\)
Ta có \(\frac{17}{3}=5+\frac{2}{3}=5+\frac{1}{\frac{3}{2}}=5+\frac{1}{1+\frac{1}{2}}\)
=> m=5;n=1;p=2