Cho hình vuông ABCD cạnh = a . M thuộc cạnh BC ( M khác B,C) . N thuộc cạnh DC ( N khác C,D) sao cho góc MAN = 45 độ . Xác định vị trí M,N để tam giác AMN có diện tích lớn nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: \(\widehat{MAN}=\widehat{DBC}=45^0\Rightarrow AQMB\) nội tiếp. \(\left(1\right)\)
b, Từ \(\left(1\right)\Rightarrow\widehat{MQA}+\widehat{MBA}=180^0\Rightarrow\widehat{AQM}=90^0\left(\widehat{ABC}=90^0\right)\)
\(\Rightarrow MQ\perp AN\)
Tương tự như trên ta có: \(NP\perp AM\Rightarrow H\) là trực tâm của \(\Delta AMN\)
\(\Rightarrow AH\perp MN\left(đpcm\right)\)
c, Gọi \(AH\)\(∩\) \(MN=E\)
Gọi \(AF\perp AM,F\in CD\Rightarrow\widehat{FAD}=\widehat{BAM}\left(+\widehat{MAD}=90^0\right)\)
Lại có: \(\widehat{ADF}=\widehat{ABM}=90^0,AD=AB\Rightarrow\Delta ADF=\Delta ABM\left(g-c-g\right)\)
\(\Rightarrow AF=AM\)
Lại có: \(\widehat{NAF}=\widehat{MAN}=45^0\Rightarrow\Delta FAN=\Delta MAN\left(c-g-c\right)\)
\(\Rightarrow MN=FN\Rightarrow MN+NC+CM=NF+NC+CM=DN+CN+DF+CM\)
\(=\left(DN+CN\right)+\left(BM+CM\right)=CD+CB=2AD\)
Lại có tiếp: \(\hept{\begin{cases}AE\perp MN\\AD\perp NF\end{cases}}\Rightarrow AE=AD\)
\(\Rightarrow S_{ANM}=\frac{1}{2}.AE.MN=\frac{1}{2}.AD.MN\)
Lại có tiếp: \(MN\le MC+NC\)
\(\Rightarrow2MN\le MN+MC+NC=2AD\)
\(\Rightarrow MN\le AD\)
\(\Rightarrow S_{ANM}=\frac{1}{2}.AD.MN\le\frac{1}{2}AD^2\)
Dấu " = " xảy ra \(\Leftrightarrow\orbr{\begin{cases}M\equiv B\\M\equiv C\end{cases}}\)
(Rối thực sự -.- )
Tự vẽ hình nhé
Tạo hình: lấy điểm T thuộc đường thẳng DC( T không nằm trên đọan DC) sao cho góc DAT = góc BAM
lấy điểm H thuộc đường thẳng BC( H không nằm trên đọan BC) sao cho góc BAH = góc DAN.
Bạn tự c/m: \(\hept{\begin{cases}\Delta ATD=\Delta AMB\\\Delta ADN=\Delta ABH\end{cases}\Rightarrow\hept{\begin{cases}AT=AM\\AN=AH\end{cases}}}\) ( 2 cạnh tương ứng )
Tiếp theo c/m \(\hept{\begin{cases}\Delta TAN=\Delta MAN\\\Delta MAN=\Delta MAH\end{cases}\Rightarrow\hept{\begin{cases}\widehat{TNA}=\widehat{MNA}\\\widehat{NMA}=\widehat{HMA}\end{cases}}}\)( 2 góc tương ứng )
Đến đây bạn tự làm nốt nhé