Hoà tan 2,7g Al trong dd HCl vừa đủ, tính thể tích H2 (dktc) thu được
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n_{Al}=\dfrac{2,7}{27}=0,1(mol)\\ PTHH:2Al+6HCl\to 2AlCl_3+3H_2\\ \Rightarrow n_{HCl}=3n_{Al}=0,3(mol)\\ \Rightarrow V_{dd_{HCl}}=\dfrac{0,3}{0,5}=0,6(l)\)
\(n_{Fe}=\dfrac{5,6}{56}=0,1(mol);n_{HCl}=1.0,3=0,3(mol)\\ Fe+2HCl\to FeCl_2+H_2\\ \)
Vì \(\dfrac{n_{Fe}}{1}<\dfrac{n_{HCl}}{2}\) nên HCl dư
Do đó \(n_{H_2}=n_{Fe}=0,1(mol)\)
\(\Rightarrow V_{H_2}=0,1.22,4=2,24(l)\)
\(n_{Fe}=\dfrac{5,6}{56}=0,1\left(mol\right);n_{HCl}=0,1.1=0,1\left(mol\right)\)
PTHH: Fe + 2HCl --> FeCl2 + H2
Xét tỉ lệ: \(\dfrac{0,1}{1}>\dfrac{0,1}{2}\) => HCl hết, Fe dư
PTHH: Fe + 2HCl --> FeCl2 + H2
___________0,1-------------->0,05_____(mol)
=> VH2 = 0,05.22,4 = 1,12(l)
Có lẽ đề cho dd HCl 1M (1 mol/l) chứ bạn nhỉ?
a, PT: \(2Al+6HCl\rightarrow2AlCl_3+3H_2\)
b, \(n_{Al}=\dfrac{2,7}{27}=0,1\left(mol\right)\)
Theo PT: \(n_{H_2}=\dfrac{3}{2}n_{Al}=0,15\left(mol\right)\Rightarrow V_{H_2}=0,15.22,4=3,36\left(l\right)\)
c, \(n_{HCl}=3n_{Al}=0,3\left(mol\right)\Rightarrow V_{ddHCl}=\dfrac{0,3}{1}=0,3\left(l\right)\)
nAl = \(\dfrac{m}{M}=\dfrac{5,4}{27}=0,2\) ( mol )
2Al + 6HCl → 2AlCl3 + 3H2
( mol ) 0,2 → 0, 2
\(m_{AlCl_3}=n.M=0,2.\left(27+35,5\times3\right)=26,7\left(g\right)\)
a, \(n_{Al}=\dfrac{2,7}{27}=0,1\left(mol\right)\)
\(m_{HCl}=109,5.10\%=10,95\left(g\right)\Rightarrow n_{HCl}=\dfrac{10,95}{36,5}=0,3\left(mol\right)\)
PTHH: 2Al + 6HCl → 2AlCl3 + 3H2
Mol: 0,1 0,3 0,1 0,15
Ta có: \(\dfrac{0,1}{2}=\dfrac{0,3}{6}\) ⇒ Al hết, HCl hết
\(V_{H_2}=0,15.22,4=3,36\left(l\right)\)
b, \(m_{AlCl_3}=0,1.133,5=13,35\left(g\right)\)
c, mdd sau pứ = 2,7 + 109,5 - 0,15.2 = 111,9 (g)
\(C\%_{ddAlCl_3}=\dfrac{13,35.100\%}{111,9}=11,93\%\)
PTHH: \(2Al+6HCl\rightarrow2AlCl_3+3H_2\uparrow\)
Ta có: \(\left\{{}\begin{matrix}n_{Al}=\dfrac{2,7}{27}=0,1\left(mol\right)\\n_{HCl}=\dfrac{109,5\cdot10\%}{36,5}=0,3\left(mol\right)\end{matrix}\right.\)
Xét tỉ lệ: \(\dfrac{0,1}{2}=\dfrac{0,3}{6}\) \(\Rightarrow\) Al và HCl đều p/ứ hết
\(\Rightarrow\left\{{}\begin{matrix}n_{AlCl_3}=0,1\left(mol\right)\\n_{H_2}=0,15\left(mol\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m_{AlCl_3}=0,1\cdot133,5=13,35\left(g\right)\\V_{H_2}=0,15\cdot22,4=3,36\left(l\right)\\m_{H_2}=0,15\cdot2=0,3\left(g\right)\end{matrix}\right.\)
Mặt khác: \(m_{dd}=m_{Al}+m_{ddHCl}-m_{H_2}=111,9\left(g\right)\)
\(\Rightarrow C\%_{AlCl_3}=\dfrac{13,35}{111,9}\cdot100\%\approx11,93\%\)
PTHH: \(2Al+6HCl\rightarrow2AlCl_3+3H_2\)
Ta có: \(n_{Al}=\dfrac{2,7}{27}=0,1\left(mol\right)\) \(\Rightarrow n_{H_2}=0,15\left(mol\right)\) \(\Rightarrow V_{H_2}=0,15\cdot22,4=3,36\left(l\right)\)
Giúp mình với mn :)