Giữa hai bến sông A và B cách nhau 20km theo đường thẳng có một đoàn cano phục vụ chở khách liên tục, chuyển động đều với vận tốc như sau: 20km/h khi xuôi dòng từ A đến B, và 10km/h khi ngược dòng từ B về A. Ở mỗi bến cứ cách 20 phút lại có một ca nô xuất phát, khi đến bến kia ca nô đó nghỉ 20 phút rồi quay về.
a/ Tính số ca nô cần thiết phục vụ cho đoạn sông đó;
b/ Một ca nô đi từ A đến B sẽ gặp trên đường bao nhiêu ca nô chạy ngược chiều, và khi đi từ B về A sẽ gặp bao nhiêu ca nô.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=>S1=vt=2\left(vt+vn\right)\left(km\right)\)
\(=>50=\left(vt+vn\right).2=>vt+vn=25\left(1\right)\)
\(=>vt-vn=15\left(2\right)\)
(1)(2)\(=>\left\{{}\begin{matrix}vt+vn=25\\vt-vn=15\end{matrix}\right.=>\left\{{}\begin{matrix}vt=20\\vn=5\end{matrix}\right.\)
=>vận tốc dòng nước là vn=5km/h
vận tốc tàu là vy=20km/h
ý cuối hình như thiếu dữ kiện
Gọi:
1: thuyền
2: dòng nước
3: bờ sông
Khi thuyền chuyển động xuôi dòng: \(v_{13}=v_{12}+v_{23}=5+1=6\)km/h
Thời gian mà thuyền xuôi dòng: \(t_{xd}=\dfrac{S_{AB}}{v_{13}}=\dfrac{6}{6}=1h\)
Khi thuyền chuyển động ngược dòng: \(v_{13}=v_{12}-v_{23}=5-1=4\)km/h
Thời gian mà thuyền ngược dòng: \(t_{nd}=\dfrac{S_{AB}}{v_{13}}=\dfrac{6}{4}=1,5h\)
Thời gian chuyển động của thuyền khi từ A đến B: \(t=t_{xd}+t_{nd}=1+1,5=2,5h\)
Vậy:................
Giữa hai bến sông A và B cách nhau 20km theo đường thẳng có một đoàn cano phục vụ chở khách liên tục, chuyển động đều với vận tốc như sau: 20km/h khi xuôi ...