Chứng minh rằng:
20112011 - 1 chia hết cho 2010
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nó có chia hết à ???
Ta thấy 2009 chia 2010 dư -1
=> 2009 ^ 2008 chia 2010 dư 1 (1)
Lại có 2011 chia 2010 dư 1
=> 2011^2010 chia 2020 dư 1 (2)
Từ (1)(2) => 2009^2008-2011^2020 chia 2010 dư 2 (sai )
2009^2008+2011^2010 chia hết cho 2010 2009^2008+2011^2010
=2009^2008+2011^2010
=2009^2008+2011^2010+1-1
=(2009^2008+ 1) + (2011^2010– 1)
= (2009 + 1)(2009^2007- …) + (2011 – 1)(2011^2009 + …)
= 2010(2009^2008 - …) + 2010(2011^2009+ …) chia hết cho 2010
Biểu thức A có tổng cộng 2010 số hạng
\(A=2^1+2^2+....+2^{2010}\)
\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+....+\left(2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+....+2^{2009}\left(1+2\right)\)
\(A=2.3+2^3.3+....+2^{2009}.3=3\left(2+2^3+.....+2^{2009}\right)\) Chia hết cho 3
Chia hết cho 7 cũng tương tự chỉ khác là giờ chúng ta nhóm 3 số hạng đặt số hạng có số mũ nhỏ nhất trong nhóm ra ngoài là ok!
\(A=2^1+2^2+2^3+...+2^{2010}\)
\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+\left(2^5+2^6\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(A=2^1\left(1+2\right)+2^3\left(1+2\right)+2^5\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(A=2^1.3+2^3.3+2^5.3+...+2^{2009}.3\)
\(A=3.\left(2^1+2^3+2^5+...+2^{2009}\right)\)\(⋮\)\(3\)
\(\Rightarrow\)\(A⋮3\)
\(A=2^1+2^2+2^3+...+2^{2010}\)
\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+\left(2^7+2^8+2^9\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(A=2^1\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+2^7\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(A=2^1.7+2^4.7+2^7.7+...+2^{2008}.7\)
\(A=7.\left(2^1+2^4+2^7+...+2^{2008}\right)\)\(⋮\)\(7\)
\(\Rightarrow\)\(A⋮7\)
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15