K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

8 tháng 12 2021

A B C M

\(a,\) Xét \(\Delta ABM\) và \(\Delta ACM\) có:

\(AB=AC\) (giả thiết)

\(AM\) là cạnh chung

\(BM=CM\) (giả thiết)

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

\(b,\) Vì \(\Delta ABM=\Delta ACM\) (chứng minh câu \(a\))

\(\Rightarrow\widehat{BAM}=\widehat{CAM}\) (\(2\) góc tương ứng)

\(\Rightarrow AM\) là tia phân giác \(\widehat{BAC}\)

\(c,\) Vì \(\Delta ABC\) cân tại \(A\) (giả thiết)

Mà \(AM\) là tia phân giác \(\widehat{BAC}\) (chứng minh câu \(b\))

\(\Rightarrow AM\) là đường trung trực \(\Delta ABC\)

\(\Rightarrow AM\perp BC\) tại \(M\)

a: Xét ΔABM và ΔACM có

AB=AC

góc BAM=góc CAM

AM chung

=>ΔABM=ΔACM

b: ΔABM=ΔACM

=>góc BAM=góc CAM

=>AM là phân giác của góc BAC

c: ΔABM=ΔACM

=>góc AMB=góc AMC=180/2=90 độ

=>AM vuông góc BC

d: ΔABM=ΔACM

=>BM=CM

=>Mlà trung điểm của BC

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

b: Ta có: ΔABC cân tại A

mà AM là đường cao

nên AM là đường phân giác

c: Ta có: ΔABC đều

nên \(\widehat{ABM}=\widehat{ACM}=60^0\)

12 tháng 1 2022

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

b: Ta có: ΔABC cân tại A

mà AM là đường cao

nên AM là đường phân giác

c: Ta có: ΔABC đều

nên 

28 tháng 2 2021

a) xét ΔABM và ΔACM có

góc B = góc C 

AB = AC ( ΔABC cân tại A )

BM=CM ( tính chất các đường của Δ cân từ đỉnh )

=> ΔABM = ΔACM  

b) xét ΔBME và ΔCMF có

góc B bằng góc C 

BM=CM

=> ΔBME=ΔCMF ( cạnh huyền góc nhọn )

=> FM = EM 

=> ΔEMF cân tại M

c) gọi giao của EF và AM là O 

ta có BE = CF => AE=AF

=> ΔAEF cân tại A 

ta có AM là tia phân giác của góc A 

mà O nằm trên AM suy ra AO cũng là tia phân giác của góc A 

ta lại có ΔAEF cân tại A 

suy ra AO vuông góc với EF

suy ra AM vuông góc với EF

xét ΔAEF và ΔABC có 

EF và BC đều cùng vuông góc với AM => EF // BC 

 

 

a) Xét ΔABM và ΔACM có 

AB=AC(ΔABC cân tại A)

AM chung

BM=CM(M là trung điểm của BC)

Do đó: ΔABM=ΔACM(c-c-c)

b) Xét ΔEMB vuông tại E và ΔFMC vuông tại F có 

BM=CM(M là trung điểm của BC)

\(\widehat{EBM}=\widehat{FCM}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔEMB=ΔFMC(Cạnh huyền-góc nhọn)

Suy ra: ME=MF(hai cạnh tương ứng)

Xét ΔEMF có ME=MF(cmt)

nên ΔEMF cân tại M(Định nghĩa tam giác cân)

a: Xét ΔABM và ΔACM có 

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: Xét tứ giác ABMH có 

I là trung điểm của AM

I là trung điểm của BH

Do đó: ABMH là hình bình hành

Suy ra; AH//BM

hay AH//BC

24 tháng 11 2021

a) Xét tam giác ABM và ACM

AB=AC

^B=^C

MB=MC

=>2 tam giác = nhau(c.g.c)

b) vì tam giác ABM=ACM

=>^M1=^M2=90 độ

=>AM vuông góc với BC