Tìm a,b biết: BCNN(a,b) + ƯCLN(a,b)=15
Các bạn cho mình lời giải chi tiết nha. Mình cảm ơn^^
|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow\left[3\left(x+1\right)+8\right]⋮\left(x+1\right)\\ \Rightarrow x+1\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\\ \Rightarrow x\in\left\{-9;-5;-3;-2;0;1;3;7\right\}\)
a) Vì 12 ⋮ 3x + 1 => 3x + 1 ∊ Ư(12) = {-12;-6;-4;-3;-2;-1;1;2;3;4;6;12} => 3x ∊ {-13;-7;-5;-4;-3;-2;0;1;2;3;5;11}. Vì 3x ⋮ 3 => 3x ∊ {-3;0;3} => x ∊ {-1;0;1}. Vậy x ∊ {-1;0;1}. b) 2x + 3 ⋮ 7 => 2x + 3 ∊ B(7) = {...;-21;-14;-7;0;7;14;21;...}. Vì 2x ⋮ 2 mà 3 lẻ nên khi số lẻ trừ đi 3 thì 2x mới ⋮ 2 => 2x + 3 lẻ => 2x + 3 ∊ {...;-35;-21;-7;7;21;35;...} => 2x ∊ {...;-38;-24;-10;4;18;32;...} => x ∊ {...;-19;-12;-5;2;9;16;...} => x ⋮ 7 dư 2 => x = 7k + 2. Vậy x = 7k + 2 (k ∊ Z)
Lời giải:
a.
Diện tích mảnh đất là: $12.10=120$ (m2)
Diện tích phần đất trồng hoa: $6.8=48$ (m2)
b.
Diện tích trồng cỏ là: $120-48=72$ (m2)
Tổng tiền công chi trả để trồng hoa và cỏ là:
$48.40 000 +72.30 000=4080000$ (đồng)
Gọi d là ucln của 4n+7 và 2n+4
Ta có 4n+7 chia hết cho d
2n+4 chia hết cho d
=> 4n+7 chia hết cho d
2(2n+4) chia hết cho d
=> 4n+7 chia hết cho d
4n+8 chia hết cho d
=> (4n+8)-(4n+7) chia hết cho d
=> 1 chia hết cho d
=> d thược u(1)
=> d=1
Vậy ucln của 4n+7 và 2n+4 là 1
Gọi \(d\inƯC\left(4n+7,2n+4\right)\) vs \(d\inℕ^∗\)
\(\Rightarrow\hept{\begin{cases}4n+7⋮d\\2n+4⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4n+7⋮d\\2\left(2n+4\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4n+7⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow4n+8-\left(4n+7\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\RightarrowƯCLN\left(4n+7,2n+4\right)=1\)
Lời giải:
Gọi ƯCLN(a,b) = d thì $a=dx, b=dy$ với $x,y$ là 2 số tự nhiên nguyên tố cùng nhau.
BCNN(a,b) = dxy
Theo bài ra ta có: $dxy+d=15$
$d(xy+1)=15$
$\Rightarrow 15\vdots d$ nên $d\in\left\{1;3;5;15\right\}$
Nếu $d=1$ thì $xy+1=15\Rightarrow xy=14$.
Do $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,14), (14,1), (2,7), (7,2)$
$\Rightarrow (a,b)=(1,14), (14,1), (2,7), (7,2)$
Nếu $d=3$ thì $xy=4$. Do $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,4), (4,1)$
$\Rightarrow (a,b)=(3,12), (12,3)$
Nếu $d=5$ thì $xy=2$. Do $x,y$ nguyên tố cùng nhau nên $(x,y)=(2,1), (1,2)$
$\Rightarrow (a,b)=(10,5), (5,10)$
Nếu $d=15$ thì $xy=0$ (vô lý, loại)