Cho tam giác ABC có góc A = góc B+ góc C. Hai đường phân giác của góc A và góc C cắt nhau tại O. Chứng minh góc BOC = 135 độ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có A+B+C=1800
mà A=B+C
suy ra A+B+C=A+A=1800.vậy góc A=900
mà góc BOC=180- (OBC+OCB)
lại có 2(BOC+OCB)=A .vì o là giao điểm của 3 đường phân giác
suy ra BOC+OCB=450.vậy góc BOC bằng 180-45=135
Xét tam giác OCB: \(\widehat{OBC}+\widehat{OCB}=180^0-\widehat{BOC}=45^0\)
Mà OB,OC là p/g nên \(\widehat{OBC}+\widehat{OCB}=\dfrac{1}{2}\widehat{ABC}+\dfrac{1}{2}\widehat{ACB}=\dfrac{1}{2}\left(\widehat{ACB}+\widehat{ABC}\right)\)
\(\Rightarrow\widehat{ACB}+\widehat{ABC}=90^0\)
Xét tam giác ABC: \(\widehat{BAC}=180^0-\widehat{ACB}-\widehat{ABC}=180^0-\left(\widehat{ACB}+\widehat{ABC}\right)=90^0\)
Vậy ABC vuông tại A
`hatA+hatB+hatC=180^o`
mà `hatA=hatB+hatC `
`=>hatA+hatA=180^o`
`=>2hatA=180^o`
`=>hatA=90^o`
`+)hat{BOC}=180- (hat{OBC}+hat{OCB})`
.vì o là giao điểm của 3 đường phân giác
`=>2(hat{BOC}+hat{OCB})=hatA=90^o`
`=>hat{BOC}=180^o-90^o/2=180^o-45^o=135^o`