K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 Trong 14 số tự nhiên có 3 chữ số chắc chắn có 2 số chia cho 13 có cùng số dư 
Nên hiệu của chúng chia hết cho 13 
Gọi số có 6 chữ số chia hết cho 13 là abcdeg (có gạch trên đầu) thì abc-deg chia hết cho 13 
Ta có: abcdeg + (abc-deg) 
= abcdeg + abc-deg 
= 1000.abc + deg + abc - deg 
= (1000+1).abc + (deg-deg) 
= 1001.abc + 0 
= 1001.abc 
Vì 1001 chia hết cho 13 nên 1001.abc cũng chia hết cho 13 
=> abcdeg + (abc-deg) chia hết cho 13 
Mà abc-deg chia hết cho 13 
Nên abcdeg chia hết cho 13 
Vây trong 14 số đó tồn tại 2 số mà khi viết liên nhau thì tạo thành số có 6 chữ số chia hết cho 13

tích nha

11 tháng 3 2016

Trong 14 số tự nhiên có 3 chữ số chắc chắn có 2 số chia cho 13 có cùng số dư 
Nên hiệu của chúng chia hết cho 13 
Gọi số có 6 chữ số chia hết cho 13 là abcdeg (có gạch trên đầu) thì abc-deg chia hết cho 13 
Ta có: abcdeg + (abc-deg) 
= abcdeg + abc-deg 
= 1000.abc + deg + abc - deg 
= (1000+1).abc + (deg-deg) 
= 1001.abc + 0 
= 1001.abc 
Vì 1001 chia hết cho 13 nên 1001.abc cũng chia hết cho 13 
=> abcdeg + (abc-deg) chia hết cho 13 
Mà abc-deg chia hết cho 13 
Nên abcdeg chia hết cho 13 
Vây trong 14 số đó tồn tại 2 số mà khi viết liên nhau thì tạo thành số có 6 chữ số chia hết cho 13

chuc ban hoc tot nha -_-

22 tháng 11 2015

 Trong 14 số tự nhiên có 3 chữ số chắc chắn có 2 số chia cho 13 có cùng số dư 
Nên hiệu của chúng chia hết cho 13 
Gọi số có 6 chữ số chia hết cho 13 là abcdeg (có gạch trên đầu) thì abc-deg chia hết cho 13 
Ta có: abcdeg + (abc-deg) 
= abcdeg + abc-deg 
= 1000.abc + deg + abc - deg 
= (1000+1).abc + (deg-deg) 
= 1001.abc + 0 
= 1001.abc 
Vì 1001 chia hết cho 13 nên 1001.abc cũng chia hết cho 13 
=> abcdeg + (abc-deg) chia hết cho 13 
Mà abc-deg chia hết cho 13 
Nên abcdeg chia hết cho 13 
Vây trong 14 số đó tồn tại 2 số mà khi viết liên nhau thì tạo thành số có 6 chữ số chia hết cho 13

7 tháng 4 2017

ai tk mình đi đang bị âm điểm nè

cảm ơn các bạn nhìu!!!

26 tháng 2 2021

Trong 14 stn có 3 chữ số chắc chắn có tồn tại 2 số chia cho 13 có cùng số dư nên hiệu của chúng chia hết cho 13 .

Gọi số có 6 chữ số chia hết cho 13 là abcdeg thì abc - deg \(⋮\)cho 13

Ta có : abcdeg + ( abc - deg ) = abcdeg + abc - deg 

= 1000 . abc + deg + abc - deg 

= ( 1000+ 1 ) . abc + ( deg - deg )

= 1001 . abc + 0 = 1001 . abc 

Vì 1001 chia hết cho 13 nên 1001 . abc chia hết cho 13

\(\Rightarrow\)abcdeg + ( abc - deg ) chia hết cho 13

Mà ( abc - deg ) chia hết cho 13 nên abcdeg chia hết cho 13 .

Vậy trong 14 số đó tồn tại 2 số mà khi viết liên tiếp nhau thì tao thành số có 6 chữ số chia hết cho 13 .

27 tháng 3 2017
Trong 14 số tự nhiên có 3 chữ số chắc chắn có 2 số chia cho 13 có cùng số dư
Nên hiệu của chúng chia hết cho 13
Gọi số có 6 chữ số chia hết cho 13 là \(abcdeg\) (có gạch trên đầu) thì \(abc-deg\) \(⋮\) 13
Ta có: \(abcdeg+\left(abc-deg\right)\)
= abcdeg + abc-deg
= 1000.abc + deg + abc - deg
= (1000+1).abc + (deg-deg)
= 1001.abc + 0
= 1001.abc
\(1001\) \(⋮\) \(13\) nên \(1001.abc\) \(⋮\) \(13\)
=> \(abcdeg\) + \(\left(abc-deg\right)\) \(⋮\) \(13\)
\(abc-deg\) \(⋮\) \(13\)
Nên \(abcdeg\) \(⋮\) \(13\)
Vây trong 14 số đó tồn tại 2 số mà khi viết liền nhau thì tạo thành số có 6 chữ số chia hết cho 13 Chúc bn học tốt nhé!!