Cho tứ giác ABCD có AD = BC và AB < CD. Trung điểm của các cạnh AB vàCD là M và N. Trung điểm của các đường chéo BD và AC là P và Q.
a/ Chứng minh tứ giác MNPQ là hình thoi.
b/ Hai cạnh DA và CB kéo dài cắt nhau tại G, kẻ tia phân giác Gx của gócAGB. Chứng minh Gx//MN
a: Xét ΔABD có
M là trung điểm của AB
P là trung điểm của BD
Do đó: MP là đường trung bình của ΔABD
Suy ra: MP//AD và MP=AD/2(1)
Xét ΔADC có
Q là trung điểm của AC
N là trung điểm của DC
Do đó: QN là đường trung bình của ΔADC
Suy ra: QN//AD và QN=AD/2(2)
Xét ΔABC có
M là trung điểm của AB
Q là trung điểm của AC
Do đó: MQ là đường trung bình của ΔABC
Suy ra: MQ=BC/2=AD/2(3)
Từ (1), (2) và (3) suy ra MQNP là hình bình hành