1 cano chạy trên sông đang chảy. Nếu cano xuôi dòng 5km và ngược dòng 9km thì mất 1 giờ. Nếu cano xuôi dòng 10km và ngược dòng 6km thì cũng mất 1 giờ. Tính vận tốc của cano và vận tốc của dòng nước.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc riêng canô, dòng nước lần lượt là x ; y ( x > y > 0, km/h )
khi đó vân tốc canô đi xuôi dòng là x + y km/h
vận tốc dòng nước đi ngược dòng là x - y km/h
*) Nếu canô xuôi dòng 5km và ngược dòng 9km hết 1 giờ
ta có pt : \(\frac{5}{x+y}+\frac{9}{x-y}=1\)(1)
*) Nếu canô xuôi dòng 10km và ngược dòng 6km hết 1 giờ
ta có pt : \(\frac{10}{x+y}+\frac{6}{x-y}=1\)(2)
Từ (1) ; (2) ta có hệ pt \(\hept{\begin{cases}\frac{5}{x+y}+\frac{9}{x-y}=1\\\frac{10}{x+y}+\frac{6}{x-y}=1\end{cases}}\)
Đặt \(\hept{\begin{cases}\frac{1}{x+y}=t\\\frac{1}{x-y}=u\end{cases}}\)ta có hệ mới \(\hept{\begin{cases}5t+9u=1\\10t+6u=1\end{cases}\Leftrightarrow\hept{\begin{cases}t=\frac{1}{20}\\u=\frac{1}{12}\end{cases}}}\)
Theo cách đặt \(\hept{\begin{cases}x+y=20\\x-y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}2y=8\\x=y+12\end{cases}\Leftrightarrow\hept{\begin{cases}y=4\\x=16\end{cases}}}\)(tm)
Vậy vận tốc canô là 16 km/h
vận tốc dòng nước là 4 km/h
gọi vận tốc cano và dòng nước lần lượt là x,y ( ĐK: x, y > 0 )
vận tốc thực của cano khi xuôi dòng : x+ y
vận tốc thực của ca nô khi ngược dòng : x-y
tổng thời gian ca no đi xuôi 84 km và ngược dòng 44 km là 5h nên ta có pt:
\(\frac{84}{x+y}\) + \(\frac{44}{x-y}\) = 5
tương tự với giả thiết còn lại, ta có : \(\frac{112}{x+y}+\frac{110}{x-y}=9\)
Như vậy ta có hệ pt :.... ( bạn biết phải không ? )
đặt ẩn phụ cho \(\frac{1}{x+y}\) và \(\frac{1}{x-y}\) , ta có hệ pt thứ 2 là : x+y = 28 và x-y = 22 <=> x =25 và y =3
Vậy ....
Trả lời:
Gọi vận tốc cano là x (km/h), vận tốc dòng nước là y (km/h)
Khi cano xuôi dòng:
12/(x+y) + 12/(x-y) = 2,5 (1)
Khi cano xuôi dòng 4km và ngược dòng 8km:
4/(x+y) + 8/(x-y) = 4/3 (2)
Từ (1) và (2) => 1/(x+y) = 1/12 và 1/(x-y) = 1/8
=> x+y =12 và x-y =8
=> x = (12+8)/2 =10
y =x-8 =2
Vận vận tốc cano là 10 km/h, vận tốc dòng nước là 2 km/h.
~Học tốt!~
Gọi vận tố cano là x (km/h) (x>y>0)
Vận tốc dòng nước là y (km/h)
Vận tốc cano khi xuôi dòng là x+y (km/h)
Vận tốc cano khi ngược dòng là x-y (km/h)
Thời gian cano đi khi xuôi dòng lần đầu là \(\frac{108}{x+y}\)(h)
Thời gian cano đi khi ngược dòng lần đầu là \(\frac{63}{x-y}\)(h)
Theo đề bài ta có PT : \(\frac{108}{x+y}+\frac{63}{x-y}=7\) (1)
Thời gian cano đi khi xuôi dòng lần 2 là \(\frac{81}{x+y}\)(h)
Thời gian cano đi khi ngược dòng lần 2 là \(\frac{84}{x-y}\)(h)
Theo đề bài ta có PT: \(\frac{81}{x+y}+\frac{84}{x-y}=7\) (2)
Từ (1) và (2) ta có hệ PT :
\(\frac{108}{x+y}+\frac{63}{x-y}=7\)
\(\frac{81}{x+y}+\frac{84}{x-y}=7\)
Tự giải tiếp nha. Giải = cách đặt ẩn phụ rồi thay vào là OK
Gọi vận tốc thực của cano là x (km/h, x > 0), vận tốc dòng nước là y (km/h, 0 < y < x)
Vận tốc cano khi xuôi dòng là x + y (km/h), vận tốc cano khi ngược dòng là: x – y (km/h)
Cano chạy trên sông trong 7 giờ, xuôi dòng 108 km và ngược dòng 63 km nên ta có phương trình
108 x + y + 63 x − y = 7
Cano chạy trên sông trong 7 giờ, xuôi dòng 81 km và ngược dòng 84 km nên ta có phương trình:
81 x + y + 84 x − y = 7
Ta có hệ phương trình
108 x + y + 63 x − y = 7 81 x + y + 84 x − y = 7 ⇔ 432 x + y + 252 x − y = 28 243 x + y + 252 x − y = 21 ⇔ 432 x + y + 252 x − y − 243 x + y + 252 x − y = 28 − 21 81 x + y + 84 x − y = 7 ⇔ 189 x + y = 7 81 x + y + 84 x − y = 7 ⇔ x + y = 27 81 27 + 84 x − y = 7 ⇔ x + y = 27 84 x − y = 4 ⇔ x + y = 27 x − y = 21 ⇔ x + y + x − y = 27 + 21 x + y = 27 ⇔ 2 x = 48 y = 27 − x ⇔ x = 24 y = 27 − 24 ⇔ x = 24 y = 3
(thỏa mãn)
Vậy vận tốc dòng ngước là 3 km/h
Đáp án: B
hệ: \(\left\{{}\begin{matrix}\dfrac{63}{x+y}+\dfrac{30}{x-y}=5\\\dfrac{42}{x+y}+\dfrac{45}{x-y}=5\end{matrix}\right.\) giải hệ tìm x và y
Trong đó x là vận tốc của ca nô
y là vận tốc của dòng nước
xuôi dòng x+y ngược dòng x-y
Gọi vận tốc của cano và vận tốc dòng nước lần lượt là \(x,y\left(km/h\right),x>y>0\).
Vận tốc xuôi dòng là: \(x+y\left(km/h\right)\)
Vận tốc ngược dòng là: \(x-y\left(km/h\right)\)
Ta có hệ phương trình:
\(\hept{\begin{cases}\frac{5}{x+y}+\frac{9}{x-y}=1\\\frac{10}{x+y}+\frac{6}{x-y}=1\end{cases}}\)
Đặt \(a=\frac{1}{x+y},b=\frac{1}{x-y}\)
\(\hept{\begin{cases}5a+9b=1\\10a+6b=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{1}{20}\\b=\frac{1}{12}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y=20\\x-y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16\\y=4\end{cases}}\)(thỏa mãn)
cái này là bài cấp 1 thầy/cô ơi