Gia tri x thoa man:
x2 - xy = -18
va: x-y = 3
Giup mk vs nha!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
xy + yz + xz \(\le\)x2 + y2 + z2
<=> 3(xy + yz + xz) \(\le\)(x + y + z)2 = 9
<=> xy + yz + xz \(\le\)3
Vậy GTLN là 3 đạt được khi x = y = z = 1
Ta có BĐT \(x^2+1\ge2x\Leftrightarrow\left(x-1\right)^2\ge0\)
Tương tự cũng có 2 BĐT tương tự:
\(y^2+1\ge2y;z^2+1\ge2z\)
\(\Rightarrow x^2+y^2+z^2+3\ge2\left(x+y+z\right)\left(1\right)\)
Và BĐT \(x^2+y^2+z^2\ge xy+yz+xz\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(y-z\right)^2\ge0\)
\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\left(2\right)\)
Cộng theo vế 2 BĐT (1) và (2) có:
\(3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+xz\right)\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)+3\ge2\cdot6=12\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge9\Leftrightarrow x^2+y^2+z^2\ge3\)
Xảy ra khi \(x=y=z=1\)
Lớp 9 gì mà hs lớp 7 làm đc :)) ahaha
Áp dụng bất đẳng thức Cauchy ta có :
\(x^2+1\ge2x\)
\(y^2+1\ge2y\)
\(z^2+1\ge2z\)
\(x^2+y^2\ge2xy\)
\(y^2+z^2\ge2yz\)
\(x^2+z^2\ge2zx\)
Cộng vế với vế ta được :
\(3x^2+3y^2+3z^2+3\ge x+y+z+xy+xz+yz\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)+3\ge6\)
\(\Rightarrow x^2+y^2+z^2\ge\frac{6-3}{3}=1\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)
Vậy \(x^2+y^2+z^2\) có GTNN là 1 tại \(x=y=z=1\)
\(x^2=yz\Rightarrow\frac{x}{y}=\frac{z}{x}\left(1\right)\)
\(y^2=xz\Rightarrow\frac{x}{y}=\frac{y}{z}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
\(\Rightarrow x=y=z\)
Thay y, z bằng x \(\Rightarrow M=\frac{3.x^{2019}}{\left(3x\right)^{2019}}=\frac{3x^{2019}}{3^{2019}.x^{2019}}=\frac{1}{3^{2018}}\)
\(x^2-xy=x.x-x.y=x.\left(x-y\right)=x.3=-18\)
x = -18 : 3
x= -6
x2 - xy = -18 <=> x(x -y)= -18
<=>3x= -18<=> x= -6