K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2021

\(\Leftrightarrow3x\left(2x-5\right)+2x-5-6x^2+5x-1-13=0\\ \Leftrightarrow6x^2-15x+2x-5-6x^2+5x-1-13=0\\ \Leftrightarrow-8x-19=0\\ \Leftrightarrow-8x=19\\ \Leftrightarrow x=-\dfrac{19}{8}\)

18 tháng 11 2021

⇔3x(2x−5)+2x−5−6x2+5x−1−13=0⇔6x2−15x+2x−5−6x2+5x−1−13=0⇔−8x−19=0⇔−8x=19⇔x=−198

10 tháng 12 2021

b: \(A=\dfrac{2-1}{3\cdot2}=\dfrac{1}{6}\)

28 tháng 9 2015

1/ => 2x + 1 = 0 => 2x = -1 => x = -1/2

hoặc 3x - 9 = 0 => 3x = 9 => x = 3

Vậy x = { -1/2 ; 3 }

2/ => x2 = 0 => x = 0 

hoặc 2/3 - 5x = 0 => 5x = 2/3 => x = 2/15

Vậy x = 2/15 ; x = 0

3/ 2x - 7 = 7 - 2x

=> 2x + 2x = 7 + 7 

=> 4x = 14

=> x = 7/2

Vậy x = 7/2

 

NV
17 tháng 2 2022

\(x+y\le xy\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}\le1\)

\(M=\dfrac{1}{2\left(x^2+y^2\right)+y^2}+\dfrac{1}{2\left(x^2+y^2\right)+x^2}\le\dfrac{1}{4xy+y^2}+\dfrac{1}{4xy+x^2}\)

\(B\le\dfrac{1}{25}\left(\dfrac{4}{xy}+\dfrac{1}{y^2}\right)+\dfrac{1}{25}\left(\dfrac{4}{xy}+\dfrac{1}{x^2}\right)=\dfrac{1}{25}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{2}{xy}+\dfrac{6}{xy}\right)\)

\(M\le\dfrac{1}{25}\left[\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2+\dfrac{3}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\right]=\dfrac{1}{10}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le\dfrac{1}{10}\)

\(M_{max}=\dfrac{1}{10}\) khi \(x=y=2\)

NV
18 tháng 2 2022

Sử dụng BĐT cộng mẫu:

\(\dfrac{1}{xy}+\dfrac{1}{xy}+\dfrac{1}{xy}+\dfrac{1}{xy}+\dfrac{1}{y^2}\ge\dfrac{\left(1+1+1+1+1\right)^2}{xy+xy+xy+xy+y^2}=\dfrac{25}{4xy+y^2}\)

\(\Rightarrow\dfrac{1}{4xy+y^2}\le\dfrac{1}{25}\left(\dfrac{4}{xy}+\dfrac{1}{y^2}\right)\)