Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm K sao cho AB = BK. Gọi H là trung điểm AK. Kéo dài BH cắt AC tại I.
a) Nếu góc ABC bằng 60°. Tính số đo góc ACB.
b) Chứng minh ∆ABH = ∆KBH. Từ đó suy ra AK vuông góc với BI.
c) Qua K kẻ đường thẳng song song với AC, cắt Bh, AB lần lượt tại N và D. Chứng minh KA là tia phân giác của góc IKD.
d) Kẻ AM vuông góc với BC tại M. Chứng minh 3 điểm A, N, M thẳng hàng.
[vẽ hình nữa nka:<]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Anh không vẽ hình vì sợ duyệt. Với lại anh sẽ chia bài này thành 4 câu trả lời cho 4 câu a,b,c,d để rút ngắn lại. Dài quá cũng sợ duyệt.
a) \(\Delta ABC\)vuông tại A (gt) \(\Rightarrow\widehat{B}+\widehat{C}=90^0\)(tình chất tam giác vuông)\(\Rightarrow\widehat{C}=90^0-\widehat{B}\)
Vì \(\widehat{B}=60^0\left(gt\right)\Rightarrow\widehat{C}=90^0-60^0=30^0\)
b) Vì H là trung điểm của AK (gt) \(\Rightarrow HA=HK\)và H nằm giữa A và K
Xét \(\Delta ABH\)và \(\Delta KBH\), ta có:
\(AB=BK\left(gt\right);HA=HK\left(cmt\right);\)BH là cạnh chung
\(\Rightarrow\Delta ABH=\Delta KBH\left(c.c.c\right)\)
\(\Rightarrow\widehat{AHB}=\widehat{KHB}\)(2 góc tương ứng)
Mặt khác vì H nằm giữa A và K (cmt) \(\Rightarrow\widehat{AHB}+\widehat{KHB}=180^0\)\(\Rightarrow2\widehat{AHB}=180^0\)\(\Rightarrow\widehat{AHB}=90^0\)
\(\Rightarrow AK\perp BI\)tại H
a: Xét ΔABH và ΔKBH có
BA=BK
\(\widehat{ABH}=\widehat{KBH}\)
BH chung
Do đó: ΔABH=ΔKBH
có làm thì mới có ăn,ko làm ăn cứt