Tìm các số nguyên dương n sao cho n4+n3+1 là số chính phương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2,\\ n=0\Leftrightarrow A=1\left(loại\right)\\ n=1\Leftrightarrow A=3\left(nhận\right)\\ n>1\Leftrightarrow A=n^{2012}-n^2+n^{2002}-n+n^2+n+1\\ \Leftrightarrow A=n^2\left[\left(n^3\right)^{670}-1\right]+n\left[\left(n^3\right)^{667}-1\right]+\left(n^2+n+1\right)\)
Ta có \(\left(n^3\right)^{670}-1⋮\left(n^3-1\right)=\left(n-1\right)\left(n^2+n+1\right)⋮\left(n^2+n+1\right)\)
Tương tự \(\left(n^3\right)^{667}⋮\left(n^2+n+1\right)\)
\(\Leftrightarrow A⋮\left(n^2+n+1\right);A>1\)
Vậy A là hợp số với \(n>1\)
Vậy \(n=1\)
\(3,\)
Đặt \(A=n^4+n^3+1\)
\(n=1\Leftrightarrow A=3\left(loại\right)\\ n\ge2\Leftrightarrow\left(2n^2+n-1\right)^2\le4A\le\left(2n^2+n\right)^2\\ \Leftrightarrow4A=\left(2n^2+n\right)^2\\ \Leftrightarrow4n^2+4n^3+4=4n^2+4n^3+n^2\\ \Leftrightarrow n^2=4\Leftrightarrow n=2\)
Vậy \(n=2\)
Đặt \(A=n\left(n+1\right)\left(n+7\right)\left(n+8\right)\)
\(=\left(n^2+8n\right)\left(n^2+8n+7\right)\) (1)
Đặt \(t=n^2+8n\) Vì n > 0 nên t > 0
Vì A là số chính phương đặt A=k2 \(\left(k\in N\right)\) Vì t>0 => k > 0
(1) \(\Rightarrow\) \(t\left(t+7\right)=k^2\)
\(\Leftrightarrow4t^2+28t-4k^2=0\)
\(\Leftrightarrow\left(4t^2+28t+49\right)-4k^2-49=0\)
\(\Leftrightarrow\left(2t+7\right)^2-\left(2k\right)^2=49\)
\(\Leftrightarrow\left(2t+7-2k\right)\left(2t+7+2k\right)=49\)
Xét các ước của 49 với chú ý rằng \(2t+7-2k< 2t+7+2k\) vì k > 0 từ đó dễ dàng tìm được t
Sau đó ta tìm được các giá trị của n.