Cho tam giác ABC có I là giao 3 đường phân giác,M trung điểm BC, kẻ AH vuông góc với BC, IM giao với AH tại E. Chứng minh khoảng cách từ I đến các cạnh của tam giác bằng với AE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHE vuông tại H và ΔADE vuông tại D có
AE chung
AH=AD
=>ΔAHE=ΔADE
=>HE=DE và góc EAH=góc DAE
=>AE là phân giác của góc DAH
AH=AD
EH=ED
=>AE là trung trực của HD
=>I là trung điểm của HD
=>IH=ID
b: Xét ΔEHF vuông tại H và ΔEDC vuông tại D có
EH=ED
góc HEF=góc DEC
=>ΔEHF=ΔEDC
=>EF=EC
Hình thì bạn tự vẽ nha =))) Mik xin lỗi
a) Chứng Minh AB=BK
Xét tam giác ABE ( góc AEB = 90o ) và tam giác BEK ( góc BEK = 90o ) có :
B1 = B2 ( vì BD là tia p/giác của BAC )
BE là cạnh huyền chung
=) tam giác ABE = tam giác BEK ( ch - gn )
=) AB = AK ( 2 cạnh tương ứng )
b) Chứnh minh DK vuông góc với BC
Xét tam giác ABD và Xét tam giác KBD có :
AB = BK (cm ở câu a )
B1 = B2 vì ( BD là tia p/giác của BAC )
BD là cạnh chung
=) tam giác ABD = tam giác KBD ( cgc )
=) góc BKD = góc BAD ( 2 góc tương ứng )
mà góc BAD = 90o
=) góc KBD = 90o
=) DK vuông góc vs BC
c) CM IK // AC
a) Chứng Minh AB=BK
Xét tam giác ABE ( góc AEB = 90o ) và tam giác BEK ( góc BEK = 90o ) có :
B1 = B2 ( vì BD là tia p/giác của BAC )
BE là cạnh huyền chung
=) tam giác ABE = tam giác BEK ( ch - gn )
=) AB = AK ( 2 cạnh tương ứng )
b) Chứnh minh DK vuông góc với BC
Xét tam giác ABD và Xét tam giác KBD có :
AB = BK (cm ở câu a )
B1 = B2 vì ( BD là tia p/giác của BAC )
BD là cạnh chung
=) tam giác ABD = tam giác KBD ( cgc )
=) góc BKD = góc BAD ( 2 góc tương ứng )
mà góc BAD = 90o
=) góc KBD = 90o
=) DK vuông góc vs BC
c) CM IK // AC