K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

Để \(k^2+6k+1\)là số chính phương thì \(k^2+6k+1=a^2\left(a\in N\right)\)

\(\left(k^2+6k+9\right)-8=a^2\)

\(\Leftrightarrow\left(k+3\right)^2-a^2=8\)

\(\Leftrightarrow\left(k+a+3\right)\left(k-a+3\right)=8\)

Đến đây liệt kê ước của 8 ra rùi giải tiếp :))

11 tháng 6 2021

a) Đặt A = 20184n + 20194n + 20204n

= (20184)n + (20194)n + (20204)n

= (....6)n + (....1)n + (....0)n

= (...6) + (...1) + (...0) = (....7) 

=> A không là số chính phương

b) Đặt 1995 + n = a2 (1) 

2014 + n = b2 (2)

a;b \(\inℤ\)

=> (2004 + n) - (1995 + n) = b2 - a2

=> b2 - a2 = 9

=> b2 - ab + ab - a2 = 9

=> b(b - a) + a(b - a) = 9

=> (b + a)(b - a) = 9

Lập bảng xét các trường hợp

b - a19-1-93-3
b + a91-9-1-33
a-444-4-33
b55-5-500

Từ a;b tìm được thay vào (1)(2) ta được 

n = -1979 ; n = -2014 ; 

1 tháng 9 2021

n và n+1 là số chính phương nên \(\)\(\left\{{}\begin{matrix}n\ge0\\n+1\ge0\end{matrix}\right.\Rightarrow n\ge0\)

Vì n và n+1 là số chính phương và n và n+1 là 2 số nguyên liên tiếp

\(\Rightarrow\left\{{}\begin{matrix}n=0\\n+1=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}n=0\\n=-1\end{matrix}\right.\)

Vì \(n\ge0\)

Nên n=0

Vậy ....

23 tháng 9 2017

tìm số nguyên tố p để 4p + 1 là số chính phương