Cho \(B=\dfrac{5}{\sqrt{x}-1}\) Tìm x thuộc Z để B có giá trị nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(F=\dfrac{5}{\sqrt{x}+1}\) có giá trị nguyên thì \(5⋮\left(\sqrt{x}+1\right)\)
Suy ra \(\left(\sqrt{x}+1\right)\inƯ\left(5\right)\) hay \(\left(\sqrt{x}+1\right)\in\left\{1;-1;5;-5\right\}\)
Ta có bảng:
\(\sqrt{x}+1\) | 1 | -1 | 5 | -5 |
x | 0 | không có | 2 | không có |
Vậy để \(F=\dfrac{5}{\sqrt{x}+1}\) có giá trị nguyên thì \(x\in\left\{0;2\right\}\)
a) \(B=\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{1}{\sqrt{x}-2}\right):\dfrac{\sqrt{x}+2}{x-4}\left(đk:x\ge0,x\ne4\right)\)
\(=\dfrac{\sqrt{x}+\sqrt{x}+2}{x-4}.\dfrac{x-4}{\sqrt{x}+2}=\dfrac{2\sqrt{x}+2}{\sqrt{x}+2}\)
c) \(C=A\left(B-2\right)=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\left(\dfrac{2\sqrt{x}+2}{\sqrt{x}+2}-2\right)\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}.\dfrac{-2}{\sqrt{x}+2}=\dfrac{-2}{\sqrt{x}-2}\in Z\)
\(\Rightarrow\sqrt{x}-2\inƯ\left(2\right)=\left\{1;-1;2-2\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{3;1;4;0\right\}\)
\(\Rightarrow x\in\left\{0;1;9;16\right\}\)
\(B=\dfrac{2}{\sqrt{x}-3}+\dfrac{2\sqrt{x}}{x-4\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
\(=\dfrac{2\sqrt{x}-2+2\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)
Để B nguyên thì \(\sqrt{x}-3\in\left\{1;-1;5\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{4;2;8\right\}\)
hay \(x\in\left\{16;4;64\right\}\)
\(B=\frac{5}{\sqrt{x}-1}\)
Để B nguyên thì: \(\sqrt{x}-1\inƯ\left(5\right)\)
Mà: Ư(5)={-1;1;-5;-5}
=> \(\sqrt{x}-1\in\left\{1;-1;5-;5\right\}\)
Ta có bảng sau:
\(\sqrt{x}-1\) | 1 | -1 | 5 | -5 |
x | 4 | 0 | 36 | loại |
Vậy x={0;4;16}
Để A nguyên thì \(2\sqrt{x}+3⋮3\sqrt{x}-1\)
\(\Leftrightarrow6\sqrt{x}+9⋮3\sqrt{x}-1\)
\(\Leftrightarrow3\sqrt{x}-1\in\left\{-1;1;11\right\}\)
\(\Leftrightarrow3\sqrt{x}\in\left\{0;12\right\}\)
hay \(x\in\left\{0;16\right\}\)
Để B có nghĩa thì x ≥ 0 và x ≠ 1
\(B=\dfrac{5}{\sqrt{x}-1}\) nguyên khi \(\sqrt{x}-1\) thuộc ước của 5
⇒ \(\sqrt{x}-1\) ∈ \(\left\{1,-1,5,-5\right\}\)
\(TH1:\sqrt{x}-1=1\Rightarrow x=4\)
\(TH2:\sqrt{x}-1=-1\Rightarrow x=0\)
\(TH3:\sqrt{x}-1=5\Rightarrow x=36\)
\(TH4:\sqrt{x}-1=-5\Rightarrow x=-4\) (loại vì x ≥ 0)
Vậy \(x\in\left\{0,4,36\right\}\)
\(ĐK:x\ge0;x\ne1\\ B\in Z\Leftrightarrow\sqrt{x}-1\inƯ\left(5\right)=\left\{-1;1;5\right\}\left(\sqrt{x}-1\ge-1\right)\\ \Leftrightarrow\sqrt{x}\in\left\{0;2;6\right\}\\ \Leftrightarrow x\in\left\{0;4;36\right\}\left(tm\right)\)