Từ điểm S nằm ngoài đường tròn tâm (O;R) vẽ hai tiếp tuyến SA;SB (A;B là các tiếp điểm ). Cát tuyến SMN cắt bán kính OB. Gọi Q là trung điểm MN .
a)Chứng minh tứ giác SAOQ nội tiếp đường tròn .
b)Chứng minh QS là phân giác của góc AQB .
c)Qua Q vẽ đường thẳng vuông góc với OS cắt tia SA,SB thứ tự tại C,D. Khi (O;R) và đường thẳng MN cố định .Tìm vị trí của S trên đường thẳng MN để diện tích tam giác SCD nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có SA = SB (tc tiếp tuyến cắt nhau )
OA = OB = R
Vậy OS là đường trung trực đoạn AB
=> SO vuông AB tại H
b, Vì I là trung điểm
=> OI vuông NS
Xét tứ giác IHSE ta có ^EHS = ^EIS = 900
mà 2 góc này kề, cùng nhìn cạnh ES
Vậy tứ giác IHSE nt 1 đường tròn
=> ^ESH = ^HIO ( góc ngoài đỉnh I )
Xét tam giác OIH và tam giác OSE có
^HIO = ^OSE (cmt)
^O_ chung
Vậy tam giác OIH ~ tam giác OSE (g.g)
\(\dfrac{OI}{OS}=\dfrac{OH}{OE}\Rightarrow OI.OE=OH.OS\)
Xét tam giác OAS vuông tại A ( do SA là tiếp tuyến với A là tiếp điểm), đường cao AH ta có
\(OA^2=OH.OS\)(hệ thức lượng)
\(\Rightarrow OA^2=R^2=OI.OE\)
a: Xét tứ giác OASB có
\(\widehat{OAS}+\widehat{OBS}=180^0\)
Do đó: OASB là tứ giác nội tiếp
Giúp mình câu C với